rat basophilic leukemia cells
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 6)

H-INDEX

39
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Misun Kim ◽  
Hyein Jo ◽  
Yoojung Kwon ◽  
Myeong Seon Jeong ◽  
Hyun Suk Jung ◽  
...  

In a previous study, we have demonstrated that p62, a selective receptor of autophagy, can regulate allergic inflammation. In the present study, microRNA array analysis showed that miR-154-5p was increased by antigen (DNP-HSA) in a p62-dependent manner in rat basophilic leukemia cells (RBL2H3). NF-kB directly increased the expression of miR-154-5p. miR-154-5p mediated in vivo allergic reactions, including passive cutaneous anaphylaxis and passive systemic anaphylaxis. Cytokine array analysis showed that antigen stimulation increased the expression of MCP1 in RBL2H3 cells in an miR-154-5p-dependent manner. Reactive oxygen species (ROS)-ERK-NF-kB signaling increased the expression of MCP1 in antigen-stimulated RBL2H3 cells. Recombinant MCP1 protein induced molecular features of allergic reactions both in vitro and in vivo. Anaphylaxis-promoted tumorigenic potential has been known to be accompanied by cellular interactions involving mast cells, and macrophages, and cancer cells. Our experiments employing culture medium, co-cultures, and recombinant MCP1 protein showed that miR-154 and MCP1 mediated these cellular interactions. MiR-154-5p and MCP1 were found to be present in exosomes of RBL2H3 cells. Exosomes from PSA-activated BALB/C mouse induced molecular features of passive cutaneous anaphylaxis in an miR-154-5p-dependent manner. Exosomes from antigen-stimulated RBL2H3 cells enhanced both tumorigenic and metastatic potentials of B16F1 melanoma cells in an miR-154-5p-dependent manner. Exosomes regulated both ROS level and ROS mediated cellular interactions during allergic inflammation. Our results indicate that the miR-154-5p-MCP1 axis might serve as a valuable target for the development of anti-allergy therapeutics.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105424 ◽  
Author(s):  
Hanieh Mazloom-Farsibaf ◽  
William K. Kanagy ◽  
Diane S. Lidke ◽  
Keith A. Lidke

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Yu ◽  
Zaizhou Liu ◽  
Yuanyuan Liang ◽  
Feng Luo ◽  
Jie Zhang ◽  
...  

Abstract Signal transduction systems enable organisms to monitor their external environments and accordingly adjust the cellular processes. In mast cells, the second messenger Ap4A binds to the histidine triad nucleotide-binding protein 1 (HINT1), disrupts its interaction with the microphthalmia-associated transcription factor (MITF), and eventually activates the transcription of genes downstream of MITF in response to immunostimulation. How the HINT1 protein recognizes and is regulated by Ap4A remain unclear. Here, using eight crystal structures, biochemical experiments, negative stain electron microscopy, and cellular experiments, we report that Ap4A specifically polymerizes HINT1 in solution and in activated rat basophilic leukemia cells. The polymerization interface overlaps with the area on HINT1 for MITF interaction, suggesting a possible competitive mechanism to release MITF for transcriptional activation. The mechanism depends precisely on the length of the phosphodiester linkage of Ap4A. These results highlight a direct polymerization signaling mechanism by the second messenger.


2019 ◽  
Vol 5 (7) ◽  
pp. 63 ◽  
Author(s):  
Machado ◽  
Bendesky ◽  
Brown ◽  
Spendier ◽  
Hagen

Total internal reflection fluorescence microscopy with polarized excitation (P-TIRF) can be used to image nanoscale curvature phenomena in live cells. We used P-TIRF to visualize rat basophilic leukemia cells (RBL-2H3 cells) primed with fluorescent anti-dinitrophenyl (anti-DNP) immunoglobulin E (IgE) coming into contact with a supported lipid bilayer containing mobile, monovalent DNP, modeling an immunological synapse. The spatial relationship of the IgE-bound high affinity IgE receptor (FcεRI) to the ratio image of P-polarized excitation and S-polarized excitation was analyzed. These studies help correlate the dynamics of cell surface molecules with the mechanical properties of the plasma membrane during synapse formation.


2019 ◽  
Author(s):  
Rosa Machado ◽  
Justin Bendesky ◽  
Madison Brown ◽  
Kathrin Spendier ◽  
Guy M. Hagen

AbstractTotal internal reflection fluorescence microscopy with polarized excitation (P-TIRF) can be used to image nanoscale curvature phenomena in live cells. We used P-TIRF to visualize rat basophilic leukemia cells (RBL-2H3 cells) coming into contact with a supported lipid bilayer, modeling an immunological synapse. These studies help correlate the dynamics of cell surface molecules with the mechanical properties of the plasma membrane during synapse formation.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3039 ◽  
Author(s):  
Shuilian Fu ◽  
Saihong Ni ◽  
Danni Wang ◽  
Tie Hong

Coptisine is one of the main components of isoquinoline alkaloids in the coptidis rhizome. The effect of coptisine on allergic rhinitis has not been investigated. In this study, we report the effects and mechanisms of coptisine using monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA)-stimulated rat basophilic leukemia cells (RBL-2H3 cells) in vitro and an ovalbumin (OVA)-induced allergic rhinitis (AR) in mice. The results showed that coptisine markedly decreased the levels of β-hexosaminidase, histamine, interleukin (IL)-4, and tumor necrosis factor (TNF)-α. Coptisine also prevented morphological changes, such as restoring an elongated shape, inhibiting granule release on toluidine blue staining, and reorganizing inhibited filamentous actins (F-actin). Additionally, coptisine blocked the phosphorylation of phosphoinositide3-kinase (PI3K)/Akt (as known as protein kinase B(PKB)) in RBL-2H3 cell. Furthermore, the results showed that coptisine suppressed OVA-induced allergic rhinitis symptoms, such as nasal rubbing and OVA-specific IgE, and histamine, IL-4 and TNF-α levels in the serum of AR mice. These data suggested that coptisine should have inhibitory effects on the inflammatory responses of mast cells, and may be beneficial for the development of coptisine as a potential anti-allergic drug.


2018 ◽  
Vol 72 (2) ◽  
pp. 464-473 ◽  
Author(s):  
Toshio Morikawa ◽  
Ikuko Hachiman ◽  
Kiyofumi Ninomiya ◽  
Hiroki Hata ◽  
Kaoru Sugawara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document