Abstract: P983 EFFECTS OF T0901317 ON LIPID ACCUMULATION AND THE EXPRESSION OF STEROL REGULATORY ELEMENT BINDING PROTEIN 1C IN THE LIVER OF APOE−/− MICE

2009 ◽  
Vol 10 (2) ◽  
pp. e1137
Author(s):  
C-K Tang ◽  
Y-W Hu ◽  
X-X Li ◽  
J Xiao ◽  
X-H Liu ◽  
...  
2020 ◽  
Vol 318 (3) ◽  
pp. F826-F834
Author(s):  
Gaizun Hu ◽  
Lusi Xu ◽  
Yixuan Ma ◽  
Masahiro Kohzuki ◽  
Osamu Ito

Excessive fructose intake causes metabolic syndrome and lipid accumulation in the kidney and leads to renal dysfunction and damage. Exercise (Ex) improves lipids regulation, but the mechanisms are unclarified in the kidney. In the present study, male Sprague-Dawley rats were allocated to groups fed with control or high-fructose (HFr) diet. Part of rats in each group underwent aerobic treadmill Ex for 12 wk. Drug treatment was performed as the fenofibrate gavage during the last 4 wk on HFr diet-fed rats. Renal function, histological changes, and expression of regulators involved in fatty acid (FA) metabolism were assessed. In CON diet-fed groups, Ex did not affect renal function or histology and significantly increased renal expression of FA β-oxidation regulators including acyl-CoA dehydrogenases (CADs), acyl-CoA oxidase, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ coactivator (PGC)-1α and lipogenic factors including acetyl-CoA carboxylase (ACCα), FA synthase (FAS), and sterol regulatory element-binding protein 1c. HFr caused albuminuria, lipid accumulation, and renal pathohistological changes, which were attenuated by Ex but not by fenofibrate. HFr decreased renal expression of medium- and short-chain CADs and PPAR-α and increased renal expression of ACCα, FAS, and sterol regulatory element-binding protein 1c. Ex increased expression of CADs, carnitine palmitoyltransferase type I, acyl-CoA oxidase, PPAR-α, and PGC-1α and decreased renal expression of ACCα and FAS in HFr diet-fed rats. The Ex-induced FA metabolism alteration was similar to that in the fenofibrate-treated group. In conclusion, the present study indicates that Ex enhanced renal FA metabolism, which might protect the kidney in lipid dysregulation diseases.


1995 ◽  
Vol 270 (49) ◽  
pp. 29422-29427 ◽  
Author(s):  
Xianxin Hua ◽  
Juro Sakai ◽  
Ho Y. K. ◽  
Joseph L. Goldstein ◽  
Michael S. Brown

2009 ◽  
Vol 29 (17) ◽  
pp. 4864-4872 ◽  
Author(s):  
Seung-Soon Im ◽  
Linda E. Hammond ◽  
Leyla Yousef ◽  
Cherryl Nugas-Selby ◽  
Dong-Ju Shin ◽  
...  

ABSTRACT We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregulated genes directly linked to lipid metabolism were Srebf1 (which encodes SREBP-1) and Acacb (which encodes acetyl coenzyme A [acetyl-CoA] carboxylase 2 [ACC2], a critical regulator of fatty acyl-CoA partitioning between cytosol and mitochondria). ACC2 regulation is particularly important during food restriction. Similar to Acacb knockout mice, SREBP-1a-deficient mice have lower hepatic triglycerides and higher serum ketones during fasting than wild-type mice. SREBP-1a and -1c have identical DNA binding and dimerization domains; thus, the failure of the more abundant SREBP-1c to substitute for activating hepatic ACC2 must relate to more efficient recruitment of transcriptional coactivators to the more potent SREBP-1a activation domain. Our chromatin immunoprecipitation results support this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document