Osteogenesis in altered gravity

Author(s):  
Ranieri Cancedda ◽  
Anita Muraglia
Keyword(s):  
2005 ◽  
Vol 8 (sup1) ◽  
pp. 281-281
Author(s):  
O. White ◽  
P. Lefevre ◽  
J. L. Thonnard

Nature ◽  
1972 ◽  
Vol 237 (5352) ◽  
pp. 199-200
Author(s):  

1984 ◽  
Vol 84 (6) ◽  
pp. 845-859 ◽  
Author(s):  
D S Dennison ◽  
W Shropshire

The gravitropism of a mature stage IV Phycomyces sporangiophore has a shorter and more uniform latency if the sporangiophore is exposed horizontally to gravity during its earlier development (stage II and stage III). This early exposure to an altered gravitational orientation causes the sporangiophore to develop a gravireceptor as it matures to stage IV and resumes elongation. A technique has been developed to observe the spatial relationship between the vacuole and the protoplasm of a living sporangiophore and to show the reorganization caused by this exposure to altered gravity. Possible gravireceptor mechanisms are discussed.


1999 ◽  
Vol 9 (1) ◽  
pp. 13-18
Author(s):  
H.N.P.M. Sondag ◽  
H.A.A. de Jong ◽  
W.J. Oosterveld

We studied vestibular function in 20 adult hamsters (3 months old) subjected to either prolonged hypergravity (n=10) or normal gravity (n=10) for 2 months. Locomotion and swimming of the hypergravity hamsters under light conditions were normal. Equilibrium maintenance was severely disturbed; only 6 of 10 hypergravity hamsters managed to walk on the small tube after 2 months, whereas all 10 controls were able to walk on the tube. The air-righting reflex was severely disturbed; the hypergravity hamsters made 30% correct responses. Finally, 5 of 8 hypergravity hamsters had to be saved from drowning when swimming in total darkness. Histological examination of the utricular otoconial layers afterwards, using energy dispersive X-ray element (EDAX) analysis and scanning electron microscopy, did not reveal any differences in calcium content, shape and size distribution of the otoconia between hypergravity hamsters and controls. We suggest that adult hamsters adapt to hypergravity, leading to problems in normal functioning when tested in 1 G, especially in tasks in which sensory input of the vestibular system is important for spatial orientation. These disturbances were more severe in adult hamsters than in young ones, tested in previous experiments. Therefore, we assume that age is a factor for adaptation to altered gravity conditions.


2003 ◽  
Vol 13 (4-6) ◽  
pp. 189-203
Author(s):  
Alexander V. Kondrachuk

It has been suggested that, in the fish, the change of otolith mass during development under altered gravity conditions [1,2,3,4,5,6,24,25,36,37] and the growth of otoliths in normal conditions [22,23,26], are determined by feedback between otolith dynamics and the processes that regulate otolith growth. The hypothesis originates from an oscillator model of the otolith [30] in which otolith mass is one of the parameters. However, the validity of this hypothesis is not obvious and has not been experimentally verified. We tested this hypothesis by comparing the oscillator model with a simplified spatially distributed model of the otolith. It was shown that in the case of a spatially distributed fixation of the otolith plate (otoconial layer) to the macular surface, the mechanical sensitivity of the otolith does not depend on the total otolith mass nor on its longitudinal size. It is determined by otolith thickness, the Young's modulus and viscosity of gel layer of the growing otolith. These parameters may change in order to maintain otolith sensitivity under conditions (such as growth or altered gravity) that change the dynamics of otolith movement.


2018 ◽  
Vol 120 (6) ◽  
pp. 3187-3197 ◽  
Author(s):  
Marissa J. Rosenberg ◽  
Raquel C. Galvan-Garza ◽  
Torin K. Clark ◽  
David P. Sherwood ◽  
Laurence R. Young ◽  
...  

Precise motion control is critical to human survival on Earth and in space. Motion sensation is inherently imprecise, and the functional implications of this imprecision are not well understood. We studied a “vestibular” manual control task in which subjects attempted to keep themselves upright with a rotational hand controller (i.e., joystick) to null out pseudorandom, roll-tilt motion disturbances of their chair in the dark. Our first objective was to study the relationship between intersubject differences in manual control performance and sensory precision, determined by measuring vestibular perceptual thresholds. Our second objective was to examine the influence of altered gravity on manual control performance. Subjects performed the manual control task while supine during short-radius centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 1.0, and 1.33 GC (1 GC = 9.81 m/s2). Roll-tilt vestibular precision was quantified with roll-tilt vestibular direction-recognition perceptual thresholds, the minimum movement that one can reliably distinguish as leftward vs. rightward. A significant intersubject correlation was found between manual control performance (defined as the standard deviation of chair tilt) and thresholds, consistent with sensory imprecision negatively affecting functional precision. Furthermore, compared with 1.0 GC manual control was more precise in 1.33 GC (−18.3%, P = 0.005) and less precise in 0.5 GC (+39.6%, P < 0.001). The decrement in manual control performance observed in 0.5 GC and in subjects with high thresholds suggests potential risk factors for piloting and locomotion, both on Earth and during human exploration missions to the moon (0.16 G) and Mars (0.38 G). NEW & NOTEWORTHY The functional implications of imprecise motion sensation are not well understood. We found a significant correlation between subjects’ vestibular perceptual thresholds and performance in a manual control task (using a joystick to keep their chair upright), consistent with sensory imprecision negatively affecting functional precision. Furthermore, using an altered-gravity centrifuge configuration, we found that manual control precision was improved in “hypergravity” and degraded in “hypogravity.” These results have potential relevance for postural control, aviation, and spaceflight.


Sign in / Sign up

Export Citation Format

Share Document