Cox-2 inhibition can change portal and splenic blood flow

2001 ◽  
Vol 33 ◽  
pp. A123
Author(s):  
F. Patrizi ◽  
A. De Santis ◽  
L. Miglioresi ◽  
P. Saecenti ◽  
T. Marianelli ◽  
...  
Keyword(s):  
2002 ◽  
Vol 34 ◽  
pp. A45
Author(s):  
F. Patrizi ◽  
A. De Santis ◽  
L. Miglioresi ◽  
P. Saccenti ◽  
T. Marinelli ◽  
...  
Keyword(s):  

1995 ◽  
Vol 79 (3) ◽  
pp. 1008-1026 ◽  
Author(s):  
D. R. Fine ◽  
D. Glasser ◽  
D. Hildebrandt ◽  
J. Esser ◽  
R. E. Lurie ◽  
...  

Hepatic function can be characterized by the activity/time curves obtained by imaging the aorta, spleen, and liver. Nonparametric deconvolution of the activity/time curves is clinically useful as a diagnostic tool in determining organ transit times and flow fractions. The use of this technique is limited, however, because of numerical and noise problems in performing deconvolution. Furthermore, the interaction of part of the tracer with the spleen and gastrointestinal tract, before it enters the liver, further obscures physiological information in the deconvolved liver curve. In this paper, a mathematical relationship is derived relating the liver activity/time curve to portal and hepatic behavior. The mathematical relationship is derived by using transit time spectrum/residence time density theory. Based on this theory, it is shown that the deconvolution of liver activity/time curves gives rise to a complex combination of splenic, gastrointestinal, and liver dependencies. An anatomically and physiologically plausible parametric model of the hepatic vascular system has been developed. This model is used in conjunction with experimental data to estimate portal, splenic, and hepatic physiological blood flow parameters for eight normal volunteers. These calculated parameters, which include the portal flow fraction, the splenic blood flow fraction, and blood transit times are shown to adequately correspond to published values. In particular, the model of the hepatic vascular system identifies the portal flow fraction as 0.752 +/- 0.022, the splenic blood flow fraction as 0.180 +/- 0.023, and the liver mean transit time as 13.4 +/- 1.71 s. The model has also been applied to two portal hypertensive patients. The variation in some of the model parameters is beyond normal limits and is consistent with the observed pathology.


1969 ◽  
Vol 98 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Toshio Sato ◽  
Kenji Koyama ◽  
Kenichi Watanabe ◽  
Shunichi Kimura

2018 ◽  
Vol 96 (11) ◽  
pp. 1060-1068
Author(s):  
Sara A. Ruggiero ◽  
Jason S. Huber ◽  
Coral L. Murrant ◽  
Keith R. Brunt ◽  
Jeremy A. Simpson

2010 ◽  
Vol 299 (5) ◽  
pp. F954-F962 ◽  
Author(s):  
Torrance Green ◽  
Jorge Rodriguez ◽  
L. Gabriel Navar

Nonsteroidal anti-inflammatory drug usage has long revealed renoprotective prostaglandin actions on the renal microvasculature during increased pressor hormone influence, but whether increased cyclooxygenase (COX)-2 expression supports prostaglandin vasodilatory influence by interfering with the actions of ANG II remains unresolved. Therefore, we tested the hypothesis that COX-2 inhibition causes hemodynamic and excretory effects that are increased in proportion to ANG II activity. In anesthetized Sprague-Dawley rats having augmented cortical COX-2 expression but different ANG II activity, we conducted renal clearance experiments during acute inhibition of COX-2 with nimesulide (NMSLD) and inhibition of COX-1 with SC-560. In one series of experiments, acute captopril [acute angiotensin-converting enzyme (ACE) inhibitor (aACEi)] was administered alone ( n = 13) or in combination with chronic captopril [chronic ACEi (cACEi)] pretreatment ( n = 19). In another series of experiments, rats were fed a normal-sodium [0.4% (NS), n = 12] or a low-sodium [0.03% (LS), n = 18] diet. NMSLD did not alter mean arterial blood pressure in any group but, in the LS and cACEi groups, decreased renal plasma flow (from 3.99 ± 0.33 to 2.85 ± 0.26 and from 4.30 ± 0.19 to 3.22 ± 0.21 ml·min−1·g−1), cortical blood flow (−12 ± 8% and −13 ± 4%), and glomerular filtration rate (from 0.88 ± 0.04 to 0.65 ± 0.05 and from 0.95 ± 0.07 to 0.70 ± 0.05 ml·min−1·g−1). In contrast, medullary blood flow (MBF) was significantly decreased by COX-2 inhibition in NS (−24 ± 5%), LS (−27 ± 8%), aACEi (−16 ± 3.8%), and cACEi (−24 ± 4.2%) groups. Absolute and fractional sodium excretion rates were unchanged by NMSLD, except in the LS group (0.75 ± 0.05 μeq/min and 0.43 ± 0.15% and 0.51 ± 0.06 μeq/min and 0.26 ± 0.10%). SC-560 did not augment the effects of NMSLD. These results demonstrate an augmented COX-2-mediated vasodilation that is not contingent on ANG II, in contrast to COX-2-mediated augmented sodium excretion, where ANG II activity is requisite. Furthermore, the COX-2 effects on MBF are not contingent on ANG II or changes in cortical microvascular responses. These results reflect COX-2 continual regulation of MBF and adaptive opposition to ANG II prohypertensinogenic effects on renal plasma flow, cortical blood flow, glomerular filtration rate, and absolute and fractional sodium excretion.


2005 ◽  
Vol 289 (6) ◽  
pp. H2334-H2341 ◽  
Author(s):  
Chen-Fuh Lam ◽  
Timothy E. Peterson ◽  
Anthony J. Croatt ◽  
Karl A. Nath ◽  
Zvonimir S. Katusic

Patients with left-to-right shunt congenital heart disease may develop pulmonary hypertension. Perioperative mortality of these patients is high due to abnormal vasoreactivity of the pulmonary artery (PA). We studied the changes in the PA induced by high pulmonary blood flow in rats with aortocaval fistula. Eight weeks after surgery, morphological changes of the PA were studied and vasomotor function was assessed by isometric force recording. Expression of endothelial nitric oxide (NO) synthase (eNOS), VEGF, and cyclooxygenase-2 (COX-2) proteins and levels of cGMP in the PA were analyzed. Rats with high pulmonary blood flow developed pulmonary hypertension, medial thickening, and increasing of internal elastic lamina and basement membrane in the PA. When compared with sham-operated animals, rats with fistula had significantly increased contractions in the PA, whereas relaxations to acetylcholine and NO donor were reduced. Concentrations of cGMP were reduced in the PA of rats with pulmonary hypertension (18.4 ± 3.3 vs. 9.4 ± 1.7 pmol/mg protein; P = 0.04). The altered vasomotor function was normalized by treatment with indomethacin. The PA of rats with fistula expressed higher levels of eNOS, phosphorylated eNOS, and COX-2. Sustained high PA blood flow in rats causes pulmonary hypertension that is morphologically and functionally identical with patients with flow-induced pulmonary hypertension. Abnormal vasomotor function of the PA in these animals appears to be mediated by reduced availability and the biological effect of endogenous NO and the high production of vasoconstrictor prostanoids. Increased eNOS and phosphorylated eNOS are most likely the adaptive changes in response to an increase in PA pressure secondary to high blood flow.


2008 ◽  
Vol 67 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Hans Wadenvik ◽  
Ingrid Denfors ◽  
Jack Kutti

ScienceRise ◽  
2015 ◽  
Vol 6 (4 (11)) ◽  
pp. 25
Author(s):  
Алий Саитович Тугушев ◽  
Виталий Викторович Вакуленко ◽  
Ольга Степановна Черковская ◽  
Дмитрий Иванович Михантьев ◽  
Вячеслав Васильевич Нешта ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Nicola Galea ◽  
Giulia Cundari ◽  
Cristian Borrazzo ◽  
Giacomo Pambianchi ◽  
Angelica Bracci ◽  
...  

The Cold Pressor Test (CPT) is a novel diagnostic strategy to noninvasively assess the myocardial microvascular endothelial-dependent function using perfusion magnetic resonance imaging (MRI). Spleen perfusion is modulated by a complex combination of several mechanisms involving the autonomic nervous system and vasoactive mediators release. In this context, the effects of cold temperature on splenic blood flow (SBF) still need to be clarified. Ten healthy subjects were studied by MRI. MRI protocol included the acquisition of GRE T1-weighted sequence (“first pass perfusion”) during gadolinium administration (0.1mmol/kg of Gd-DOTA at flow of 3.0 ml/s), at rest and after CPT. Myocardial blood flow (MBF) and SBF were measured by applying Fermi function deconvolution, using the blood pool input function sampled from the left ventricle cavity. MBF and SBF values after performing CPT were significantly higher than rest values (SBF at rest: 0.65 ± 0.15 ml/min/g Vs. SBF after CPT: 0.90 ± 0.14 ml/min/g, p: <0.001; MBF at rest: 0.90 ± 0.068 ml/min/g Vs. MBF after CPT: 1.22 ± 0.098 ml/min/g, p<0.005). Both SBF and MBF increased in all patients during the CPT. In particular, the CPT-induced increase was 43% ± 29% for SBF and 36.5% ± 17% for MBF. CPT increases SBF in normal subjects. The characterization of a standard perfusion response to cold might allow the use of the spleen as reference marker for the adequacy of cold stimulation during myocardial perfusion MRI.


Sign in / Sign up

Export Citation Format

Share Document