scholarly journals In-situ Synthesis of WC/TaC Reinforced Nickel-Based Composite Alloy Coating by Laser Cladding

2017 ◽  
Vol 46 (11) ◽  
pp. 3176-3181 ◽  
Author(s):  
Yong Yaowei ◽  
Fu Wei ◽  
Zhang Xiang ◽  
Deng Qilin ◽  
Yang Jianguo
2020 ◽  
Vol 270 ◽  
pp. 127711 ◽  
Author(s):  
Lizheng Zhang ◽  
Zhanyong Zhao ◽  
Peikang Bai ◽  
Wenbo Du ◽  
Yuxin Li ◽  
...  

2008 ◽  
Vol 66 (2) ◽  
pp. 155-162 ◽  
Author(s):  
D.G. Wang ◽  
C.Z. Chen ◽  
J. Ma ◽  
G. Zhang

2007 ◽  
Vol 14 (02) ◽  
pp. 315-319 ◽  
Author(s):  
BAOSHUAI DU ◽  
ZENGDA ZOU ◽  
XINHONG WANG ◽  
QINGMING LI

TiC and TiB 2 reinforced iron based metal matrix composite (MMC) coating was synthesized on mild carbon steel by laser cladding employing B 4 C , ferrotitanium, and FeCrSiB mixed powders. The microstructure and chemical composition were analyzed by means of SEM, EPMA, and XRD. Results show that the coating mainly consists of α– Fe(Ni) , TiB 2, TiC , B 6 Fe 23, Cr 2 B , and M 23 C 6. TiB 2, and TiC reinforcements are formed in situ through the reaction between B 4 C and ferrotitanium. Hardness and wear measurement results show that the hardness and wear resistance of the composites are much higher than that of the as-received sample.


Author(s):  
Sergei IGOSHIN ◽  
Dmitriy MASAYLO ◽  
Artem KIM ◽  
Anatoliy POPOVICH

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Nga Pham Thi-Hong

Laser cladding of Co50 alloy coating and Co50 composite coatings doped with 10, 20, and 30 wt.% TiC particles was performed on the H13 steel surface. The effects of TiC concentration on the phase composition, microstructure, and microhardness of the coatings were studied. The results indicated that, in 10% TiC coating, the “bright band” is a quite flat-growth tissue, while with 20% TiC, the “white bright band” contains a large amount of black TiC particles. The composite coating Co50, 10% TiC, and 20% TiC samples can clearly distinguish the cladding zone, bonding zone, and heat-affected zone, and a good metallurgical bond is formed between the coating and the substrate. The 30% TiC coating and the substrate are not well bonded, which is attributed to the high TiC content in the coating; however, it has the best surface morphology, and there is no porosity on the surface. 10% TiC coatings have poor surface quality, show a spraying material phenomenon on two side edges which is quite serious, and a lot of porosity on the surface of the coating. In addition, 10% TiC coating includes the original TiC particles and primary TiC particles that are precipitated in situ from the liquid phase during solidification; 20% TiC coating indicates a large amount of TiC in the form of cross petals and twigs, and the figure points out that TiC exists like a large number of diffusely distributed spherical structures in the 30% TiC coating. The coatings of TiC/Co composite with less than 20% TiC showed good metallurgical bonding characteristics with the H13 steel surface.


2015 ◽  
Vol 42 (s1) ◽  
pp. s106001
Author(s):  
唐强强 Tang Qiangqiang ◽  
张群莉 Zhang Qunli ◽  
王梁 Wang Liang ◽  
姚建华 Yao Jianhua

2012 ◽  
Vol 549 ◽  
pp. 335-339 ◽  
Author(s):  
Cheng Qiang Wang ◽  
Li Juan Wang ◽  
Jiang Qiao Wu ◽  
Zi Zhen Chen ◽  
Yong Jun Niu

The TiC/Ni composite coating was prepared by Laser Cladding In-situ Synthesis on the surface of damper plate with Ni--Ti-Mo-C -LaF3 powder.Microstructure and Wear resistance have been studied throughout EPMA、SEM and M—2000 Friction and Wear Tester.It was found that the microstructure got more homogenized grain fineness became finer, TiC distributed better and heterogeneous phase decreased, as adding moderate rare earth LaF3. When the content of LaF3 was 1%, the highest microhardness was got. While the optimal wear resistance properties were obtained with 2% LaF3. The laser cladding with excessive LaF3 has more TiC particle segregation which induces hardness and wear resistance of cladding layer.


Sign in / Sign up

Export Citation Format

Share Document