scholarly journals A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand

2013 ◽  
Vol 3 (5) ◽  
pp. 367-370 ◽  
Author(s):  
Waleed Mahmoud Al Momani ◽  
Ziyad Ahmed Taha ◽  
Abdulaziz Mahmoud Ajlouni ◽  
Qasem Mohammad Abu Shaqra ◽  
Muaz Al Zouby
2021 ◽  
Vol 33 (12) ◽  
pp. 3047-3055
Author(s):  
Ravikant ◽  
S. Gautam ◽  
H.K. Rajor ◽  
P. Pipil ◽  
J. Singh ◽  
...  

A synthetic approach has been designed and followed for the synthesis of new bidentate Schiff base ligand 2-acetylthiophenenicotinic hydrazone (L) (which possessed nitrogen and oxygen donor atoms) and its Co(II) and Cu(II) mononuclear complexes. All the compounds were examined IR, 1H NMR, mass, EPR, conductivity, elemental analysis, etc. Octahedral geometry has been assigned to all synthesized compounds on the basis of magnetic, IR and electronic spectral analysis. In vitro activity i.e. antibacterial (E. coli and P. aeruginosa) and antifungal (A. niger, M. phasolina and P. glomerata) had been examined for these compounds following well diffusion and poisoned food methods, respectively. During the performance of antifungal activity, antifungal agent was incorporated into the molten agar at various concentrations and mixed well. After performance of in vitro activity, it has been resulted out that metal(II) complexes exhibited remarkable activity than free ligand but less active compared to the standard drugs..


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Aurora Reiss ◽  
Mariana Carmen Chifiriuc ◽  
Emilia Amzoiu ◽  
Cezar Ionuţ Spînu

New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehydein situin the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested forin vitroantibacterial activity against some pathogenic bacterial strains, namelyEscherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis,andStaphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base.


2021 ◽  
Vol 35 (1) ◽  
pp. 97-106
Author(s):  
A. O. Rajee ◽  
H. F. Babamale ◽  
A. Lawal ◽  
A. A. Aliyu ◽  
W. A. Osunniran ◽  
...  

Four complexes of Mn(II), Co(II), Ni(II) and Cu(II) with Schiff base ligand (H3L) derived from 2-amino-3-methylbutanoic acid and acetylacetonate were synthesized. All complexes were characterized by elemental analysis, Fourier-transform infrared spectroscopy and electronic spectroscopy. The results confirmed the coordination of the ligand to metals in tridentate fashion via the hydroxyl oxygen, the azomethine nitrogen and the enolic acetylacetonate oxygen. Antimicrobial activities were established for all complexes, free ligand and ciprofloxacin for comparison. Both the ligand and its metal complexes were active against Gram-positive and negative bacterial strains. The Cu(II) complex, showed highest antibacterial activity among the complexes screened. Other complexes displayed considerable antibacterial activity. Octahedral geometry was proposed for the metal(II) complexes with the Schiff base.                     KEY WORDS: Schiff base, Amino acid, Metal Complexes, Antibacterial agents   Bull. Chem. Soc. Ethiop. 2021, 35(1), 97-106. DOI: https://dx.doi.org/10.4314/bcse.v35i1.8


Sign in / Sign up

Export Citation Format

Share Document