scholarly journals Cosmic Inflation: Trick or Treat?

2020 ◽  
pp. 111-173
Keyword(s):  
2012 ◽  
Vol 21 (10) ◽  
pp. 1250080
Author(s):  
JAKUB MIELCZAREK ◽  
MICHAŁ KAMIONKA

In this paper, we investigate power spectrum of a smoothed scalar field. The smoothing leads to regularization of the UV divergences and can be related with the internal structure of the considered field or the space itself. We perform Gaussian smoothing to the quantum fluctuations generated during the phase of cosmic inflation. We study whether this effect can be probed observationally and conclude that the modifications of the power spectrum due to the smoothing on the Planck scale are negligible and far beyond the observational abilities. Subsequently, we investigate whether smoothing in any other form can be probed observationally. We introduce phenomenological smoothing factor e-k2σ2 to the inflationary spectrum and investigate its effects on the spectrum of CMB anisotropies and polarization. We show that smoothing can lead to suppression of high multipoles in the spectrum of the CMB. Based on seven years observations of WMAP satellite we indicate that the present scale of high multipoles suppression is constrained by σ < 3.19 Mpc (95% CL). This corresponds to the constraint σ < 100 μm at the end of inflation. Despite this value is far above the Planck scale, other processes of smoothing can be possibly studied with this constraint, as decoherence or diffusion of primordial perturbations.


Synthese ◽  
2007 ◽  
Vol 162 (2) ◽  
pp. 157-165
Author(s):  
Peter Mark Ainsworth

2020 ◽  
Vol 35 (15) ◽  
pp. 2050123
Author(s):  
She-Sheng Xue

We present a possible understanding to the issues of cosmological constant, inflation, dark matter and coincidence problems based only on the Einstein equation and Hawking particle production. The inflation appears and results agree to observations. The CMB large-scale anomaly can be explained and the dark-matter acoustic wave is speculated. The entropy and reheating are discussed. The cosmological term [Formula: see text] tracks down the matter [Formula: see text] until the radiation-matter equilibrium, then slowly varies, thus the cosmic coincidence problem can be avoided. The relation between [Formula: see text] and [Formula: see text] is shown and can be examined at large redshifts.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Gabriel R. Bengochea ◽  
Gabriel León ◽  
Philip Pearle ◽  
Daniel Sudarsky

AbstractIn this work we consider a wide variety of alternatives opened when applying the continuous spontaneous localization (CSL) dynamical collapse theory to the inflationary era. The definitive resolution of many of the issues discussed here will have to await, not only for a general relativistic CSL theory, but for a fully workable theory of quantum gravity. Our concern here is to explore these issues, and to warn against premature conclusions. This exploration includes: two different approaches to deal with quantum field theory and gravitation, the identification of the collapse-generating operator and the general nature and values of the parameters of the CSL theory. All the choices connected with these issues have the potential to dramatically alter the conclusions one can draw. We also argue that the incompatibilities found in a recent paper, between the CSL parameter values and the cosmic microwave background observational data, are associated with specific choices made for the extrapolation to the cosmological context of the CSL theory (as it is known to work in non-relativistic laboratory situations) which do not represent the most natural ones.


Sign in / Sign up

Export Citation Format

Share Document