Extending Lewisian Modal Metaphysics from a Specific Quantum Gravity Perspective

2020 ◽  
pp. 304-337
Author(s):  
Jeremy Butterfield ◽  
Chris Isham

This chapter discusses the idea that the treatment of time in present-day physical theories, general relativity and quantum theory, might be an approximation to a very different treatment in the as yet unknown quantum theory of gravity. It considers the general idea that one theory could be emergent from another, emergence being a relation analogous to, but weaker than, intertheoretic reduction. It also gives a broad description of the search for a quantum theory of gravity and some of its interpretative problems. Thereafter, the discussion focuses on the emergence of time in two specific quantum gravity programmes: quantum geometrodynamics and the Euclidean programme. It also addresses the so-called ‘problem of time’. It is really a cluster of problems; technical and conceptual, arising from how time is treated very differently in general relativity and quantum theory.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Braking effect in quantum gravity


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
S. Ariwahjoedi ◽  
I. Husin ◽  
I. Sebastian ◽  
F. P. Zen

Nature ◽  
2003 ◽  
Vol 424 (6952) ◽  
pp. 1019-1021 ◽  
Author(s):  
T. Jacobson ◽  
S. Liberati ◽  
D. Mattingly

2012 ◽  
Vol 27 (28) ◽  
pp. 1250164
Author(s):  
J. MANUEL GARCÍA-ISLAS

In the three-dimensional spin foam model of quantum gravity with a cosmological constant, there exists a set of observables associated with spin network graphs. A set of probabilities is calculated from these observables, and hence the associated Shannon entropy can be defined. We present the Shannon entropy associated with these observables and find some interesting bounded inequalities. The problem relates measurements, entropy and information theory in a simple way which we explain.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


Sign in / Sign up

Export Citation Format

Share Document