Helicity Techniques for Dirac Particles

2021 ◽  
pp. 198-212
Keyword(s):  
2021 ◽  
Vol 104 (1) ◽  
Author(s):  
J. R. Yusupov ◽  
K. K. Sabirov ◽  
D. U. Matrasulov

2018 ◽  
Vol 98 (15) ◽  
Author(s):  
Kyriakos Flouris ◽  
Miller Mendoza Jimenez ◽  
Jens-Daniel Debus ◽  
Hans J. Herrmann

2005 ◽  
Vol 20 (26) ◽  
pp. 1997-2005 ◽  
Author(s):  
SOFIANE BOUROUAINE ◽  
ACHOUR BENSLAMA

In this paper, we investigate the influence of gravity and noncommutativity on Dirac particles. By adopting the tetrad formalism, we show that the modified Dirac equation keeps the same form. The only modification is in the expression of the covariant derivative. The new form of this derivative is the product of its counterpart given in curved spacetime with an operator which depends on the noncommutative θ-parameter. As an application, we have computed the density number of the created particles in the presence of constant strong electric field in an anisotropic Bianchi universe.


2016 ◽  
Vol 31 (23) ◽  
pp. 1650126 ◽  
Author(s):  
Nguyen Suan Han ◽  
Le Anh Dung ◽  
Nguyen Nhu Xuan ◽  
Vu Toan Thang

The derivation of the Glauber type representation for the high energy scattering amplitude of particles of spin 1/2 is given within the framework of the Dirac equation in the Foldy–Wouthuysen (FW) representation and two-component formalism. The differential cross-sections on the Yukawa and Gaussian potentials are also considered and discussed.


Sign in / Sign up

Export Citation Format

Share Document