Scalarized Electromagnetic Models

2017 ◽  
pp. 312-319
Author(s):  
Natalia K. Nikolova
2008 ◽  
Author(s):  
Beijia Zhang ◽  
Jin A. Kong ◽  
Kevin O'Neill ◽  
Bae-Ian Wu

2020 ◽  
Vol 80 (3) ◽  
Author(s):  
Rafael L. Fernandes ◽  
Everton M. C. Abreu ◽  
Marcelo B. Ribeiro

2016 ◽  
Vol 31 (12) ◽  
pp. 1650070 ◽  
Author(s):  
G. B. de Gracia ◽  
G. P. de Brito

Following a procedure recently utilized by Accioly et al. to obtain the D-dimensional interparticle potential energy for electromagnetic models in the nonrelativistic limit, and relaxing the condition assumed by the authors concerning the conservation of the external current, the prescription found out by them is generalized so that dual models can also be contemplated. Specific models in which the interaction is mediated by a spin-0 particle described first by a vector field and then by a higher-derivative vector field, are analyzed. Systems mediated by spin-1 particles described, respectively, by symmetric rank-2 tensors, symmetric rank-2 tensors augmented by higher derivatives and antisymmetric rank-2 tensors, are considered as well.


Author(s):  
Yongpan Hu ◽  
Zhiqiang Long ◽  
Yunsong Xu ◽  
Zhiqiang Wang

Poor stability of the permanent magnet electrodynamic levitation hinders its application in the maglev field. Therefore, building a control-oriented model to improve its stability is most challenging. However, intractable electromagnetic models leading to an implicit relationship between levitation force and gap, yields a barrier for model-based controller design. To solve the above-mentioned problem, this paper develops a control-oriented model by two stages. Specifically, the first stage is to show an explicit formula of the levitation force with regard to the levitation gap by neglecting end effect; meanwhile the “maximum–minimum rectification” method is put forward to evaluating an accurate levitation force. The second stage is to bring forth the control-oriented model on basis of the estimated levitation force. Although the paper focus mainly on the development of the control-oriented model, an example of PD controller is provided to verify its validation. Experiment results demonstrate the estimated levitation force is highly consistent with the real one. Simulation results show that the control-oriented model is sufficiently reliable. The research bridges the gap between the physical model and the model-based controller for the electrodynamic levitation with permanent magnet Halbach array.


Author(s):  
Christophe Geuzaine ◽  
Laurent Stainier ◽  
Francois Henrotte

In this article we propose a macroscopic model for ferromagnetic hysteresis that is well-suited for finite element implementation. The model is readily vectorial and relies on a consistent thermodynamic formulation. In particular, the stored magnetic energy and the dissipated energy are known at all times, and not solely after the completion of closed hysteresis loops as is usually the case. The obtained incremental formulation is variationally consistent, i.e., all internal variables follow from the minimization of a thermodynamic potential. This variational approach is directly inspired from the kinematic hardening theory of plasticity, which opens the door for novel energy-consistent coupled mechanical/electromagnetic models.


Actuators ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 39 ◽  
Author(s):  
Valentin Gies ◽  
Thierry Soriano

This article focuses on indirect coil guns used for launching non-magnetic objects. A mechatronic model, coupling electrical, mechanical, and electromagnetic models, is proposed. This model is applied to the optimization of a kicking system used on limited size robots for propelling real soccer balls at the RoboCup. Working with an existing coil gun, we show that fine tuning its setup, especially the initial position and the length of the non-magnetic plunger extension, leads to an increase in the ball speed of 30 % compared to previous results.


Sign in / Sign up

Export Citation Format

Share Document