Did Tlingit Ancestors Eat Sea Otters? Addressing Intellectual Property and Cultural Heritage through Zooarchaeology

2020 ◽  
Vol 85 (2) ◽  
pp. 202-221
Author(s):  
Madonna L. Moss

The maritime fur trade caused the extirpation of sea otters from southeast Alaska. In the 1960s, sea otters were reintroduced, and their numbers have increased. Now, sea otters are competing with people for what have become commercially important invertebrates. After having been absent for more than a century, the reentry of this keystone species has unsettled people. Although some communities perceive sea otters as a threat to their livelihoods, others view their return as restoration of the marine ecosystem. The federal Marine Mammal Protection Act authorizes any Alaska Native to harvest sea otters for subsistence provided that the harvest is not wasteful. Some people are seeking to define “traditional” Tlingit use of sea otters as not only using their pelts but consuming them as food, but some Tlingit maintain they never ate sea otters. This project analyzes the largest precontact archaeological assemblage of sea otter bones in southeast Alaska, with the benefit of insights gained from observing a Tlingit hunter skin a sea otter to infer that Tlingit ancestors hunted sea otters primarily for pelts. The extent to which other Indigenous peoples of the North Pacific consumed sea otters as food deserves investigation, especially as sea otters recolonize their historic range.

1966 ◽  
Vol 23 (12) ◽  
pp. 1897-1911 ◽  
Author(s):  
Edward Mitchell

Previously known by only one fossil bone from Oregon, the record of the sea otter is supplemented by description of 11 bones newly found in Late Pleistocene deposits at San Pedro and on Santa Rosa Island and one tooth from an Early Pleistocene deposit at San Pedro, southern California, all considered representative of the living species Enhydra lutris. Faunal associations suggest that the animals lived with cool-water faunas in areas of shallow to moderate depth near islands. The long-accepted hypothesis that E. lutris evolved from "Lutra reevei" during the Pliocene in the North Atlantic and migrated to the North Pacific is rejected on chronologic and zoogeographic grounds. The sea otter may be a North Pacific endemic autochthon.


2013 ◽  
Vol 70 (10) ◽  
pp. 1498-1507 ◽  
Author(s):  
Sean D. Larson ◽  
Zachary N. Hoyt ◽  
Ginny L. Eckert ◽  
Verena A. Gill

Sea cucumbers (Parastichopus californicus), which are an important commercial, subsistence, and ecological resource, are negatively affected by an expanding sea otter (Enhydra lutris) population in southeast Alaska. A few hundred sea otters were reintroduced into southeast Alaska in the late 1960s after their extirpation during the 18th and 19th century fur trade. In the ensuing decades after recolonization, the sea otter population grew exponentially in number and distribution, and sea cucumbers declined in density in areas with otters, suggesting an inverse relationship between sea otter numbers and sea cucumber density. We evaluated the interaction and effects of sea otters on sea cucumbers using sea otter foraging observations, sea otter population survey data, and sea cucumber density data. Our results indicate that sea cucumber density declined with and without sea otter presence and that the extent of the decline depends on the duration and magnitude of sea otter presence, with 100% decline in areas occupied by sea otters since 1994. Sea otter predation should be included in sea cucumber fishery management as a step toward ecosystem-based management.


2020 ◽  
Vol 655 ◽  
pp. 123-137
Author(s):  
TM Grimes ◽  
MT Tinker ◽  
BB Hughes ◽  
KE Boyer ◽  
L Needles ◽  
...  

Protective legislation and management have led to an increase in California’s sea otter Enhydra lutris nereis population. While sea otter recovery has been linked to ecosystem benefits, sea otter predation may negatively affect commercially valuable species. Understanding the potential influence of sea otters is of particular importance as their range expands into estuaries that function as nurseries for commercially valuable species like Dungeness crab Metacarcinus magister. We consider how sea otter predation has affected the abundance and size of juvenile Dungeness crab in Elkhorn Slough, California, USA, and analyzed cancrid crab abundance and size across 4 California estuaries with and without sea otters to understand how biotic and abiotic factors contribute to observed variation in crab size and abundance. We compared trends in southern sea otters relative to Dungeness crab landings in California to assess whether increasing sea otter abundance have negatively impacted landings. In Elkhorn Slough, juvenile Dungeness crab abundance and size have declined since 2012, coinciding with sea otter population growth. However, the impact of sea otters on juvenile Dungeness crab size was habitat-specific and only significant in unvegetated habitat. Across estuaries, we found that cancrid crab abundance and size were negatively associated with sea otter presence. While abiotic factors varied among estuaries, these factors explained little of the observed variation in crab abundance or size. Although we found evidence that sea otters can have localized effects on cancrid crab populations within estuaries, we found no evidence that southern sea otters, at recent population sizes, have negatively impacted Dungeness crab landings in California from 2000-2014.


1992 ◽  
Vol 70 (11) ◽  
pp. 2125-2131 ◽  
Author(s):  
Andrew W. Trites

Annual estimates of the condition of pregnant northern fur seals (Callorhinus ursinus) and the size of their fetuses were determined from over 2600 samples collected in the North Pacific from 1958 to 1972. A condition index related the observed mass of pregnant females (adjusted for fetal mass) to their predicted mass (calculated from body length). It showed that females carrying male fetuses were in poorer condition than those carrying female fetuses. It also showed that the mean condition of pregnant females improved from 1958 to 1964, but dropped sharply in 1965. Body condition remained poor until 1972, when it plunged again. Fetal mass declined throughout the 1960s, unlike body length, which changed very little. It is suggested that fetal growth, particularly mass, is a sensitive indicator of feeding conditions during the last trimester of pregnancy while pregnant females are in the Gulf of Alaska and Bering Sea. It is further speculated that the condition index for adults reflects overall feeding conditions experienced throughout the annual migration.


2015 ◽  
Vol 12 (8) ◽  
pp. 5907-5940
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


SIMULATION ◽  
2006 ◽  
Vol 82 (7) ◽  
pp. 467-474 ◽  
Author(s):  
Yoshikazu Sasai ◽  
Akio Ishida ◽  
Hideharu Sasaki ◽  
Shintaro Kawahara ◽  
Hitoshi Uehara ◽  
...  

2009 ◽  
Vol 364 (1524) ◽  
pp. 1647-1658 ◽  
Author(s):  
J.A. Estes ◽  
D.F. Doak ◽  
A.M. Springer ◽  
T.M. Williams

Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al . proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predator–prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely.


2016 ◽  
Vol 130 (2) ◽  
pp. 91 ◽  
Author(s):  
Erin Rechsteiner ◽  
Angeleen Olson

Foraging animals may risk association with potential predators to obtain otherwise inaccessible prey. We observed this strategy in wintering Harlequin Ducks (Histrionicus histrionicus) scavenging fragments of Red Sea Urchins (Mesocentrotus franciscanus) from foraging Sea Otters (Enhydra lutris) that were re-occupying an area from which they had been ecologically absent since about 1850. Harlequin Ducks, like other sea ducks, have not previously been reported scavenging from other birds or mammals. In British columbia, Red Sea Urchins have reached large sizes and densities since the removal of Sea Otter predators by the marine fur trade in the 18th and 19th centuries. Observations of Sea Otters and Harlequin Ducks were made in 4 areas, spanning a time gradient of Sea Otter occupation from 1 to 5 years. During 3 months of observations (December 2013 – February 2014), Harlequin Ducks were associated with foraging Sea Otters only at sites that were recently occupied by Sea Otters (≤ 2 months), where the proportion of urchins in Sea Otter diets was highest and where the ducks acquired urchin fragments from foraging Sea Otters. We suggest that Sea Otters re-occupying their historic range and consuming predominantly large Red Sea Urchins provide a temporarily available prey subsidy for Harlequin Ducks. Our observations document a novel effect of Sea Otters providing important prey supplementation to a marine bird when foraging in urchin-rich habitats, contributing to the overall role of Sea Otters as a keystone species.


Sign in / Sign up

Export Citation Format

Share Document