CHAIN LADDER AND ERROR PROPAGATION

2016 ◽  
Vol 46 (2) ◽  
pp. 293-330 ◽  
Author(s):  
Ancus Röhr

AbstractWe show how estimators for the chain ladder prediction error in Mack's (1993) distribution-free stochastic model can be derived using the error propagation formula. Our method allows for the treatment of the general case of the prediction error of the loss development result between two arbitrary future horizons. In the well-known special cases considered previously by Mack (1993) and Merz and Wüthrich (2008), our estimators coincide with theirs. However, the algebraic form in which we cast them is new, considerably more compact and more intuitive to understand. For example, in the classical case treated by Mack (1993), we show that the mean squared prediction error divided by the squared estimated ultimate loss can be written as ∑jû2j, where ûj measures the (relative) uncertainty around the jth development factor and the proportion of the estimated ultimate loss that it affects. The error propagation method also provides a natural split into process error and parameter error. Our proofs identify and exploit symmetries of “chain ladder processes” in a novel way. For the sake of wider practical applicability of the formulae derived, we allow for incomplete historical data and the exclusion of outliers in the triangles.

2019 ◽  
Vol 26 (3) ◽  
pp. 543-548
Author(s):  
Toshihisa Nakashima ◽  
Takayuki Ohno ◽  
Keiichi Koido ◽  
Hironobu Hashimoto ◽  
Hiroyuki Terakado

Background In cancer patients treated with vancomycin, therapeutic drug monitoring is currently performed by the Bayesian method that involves estimating individual pharmacokinetics from population pharmacokinetic parameters and trough concentrations rather than the Sawchuk–Zaske method using peak and trough concentrations. Although the presence of malignancy influences the pharmacokinetic parameters of vancomycin, it is unclear whether cancer patients were included in the Japanese patient populations employed to estimate population pharmacokinetic parameters for this drug. The difference of predictive accuracy between the Sawchuk–Zaske and Bayesian methods in Japanese cancer patients is not completely understood. Objective To retrospectively compare the accuracy of predicting vancomycin concentrations between the Sawchuk–Zaske method and the Bayesian method in Japanese cancer patients. Methods Using data from 48 patients with various malignancies, the predictive accuracy (bias) and precision of the two methods were assessed by calculating the mean prediction error, the mean absolute prediction error, and the root mean squared prediction error. Results Prediction of the trough and peak vancomycin concentrations by the Sawchuk–Zaske method and the peak concentration by the Bayesian method showed a bias toward low values according to the mean prediction error. However, there were no significant differences between the two methods with regard to the changes of the mean prediction error, mean absolute prediction error, and root mean squared prediction error. Conclusion The Sawchuk–Zaske method and Bayesian method showed similar accuracy for predicting vancomycin concentrations in Japanese cancer patients.


1971 ◽  
Vol 8 (03) ◽  
pp. 573-588 ◽  
Author(s):  
Barry Belkin

The problem of computing the distribution of the time of first passage to a constant threshold for special classes of stochastic processes has been the subject of considerable study. For example, Baxter and Donsker (1957) have considered the problem for processes with stationary, independent increments, Darling and Siegert (1953) for continuous Markov processes, Mehr and McFadden (1965) for Gauss-Markov processes, and Stone (1969) for semi-Markov processes. The results, however, generally express the first passage distribution in terms of transforms which can be inverted only in a relatively few special cases, such as in the classical case of the Weiner process and for certain stable and compound Poisson processes. For linear threshold functions and processes with non-negative interchangeable increments the first passage problem has been studied by Takács (1957) (an explicit result was obtained by Pyke (1959) in the special case of a Poisson process). Again in the case of a linear threshold, an explicit form for the first passage distribution was found by Slepian (1961) for the Weiner process. For the Ornstein-Uhlenbeck process and certain U-shaped thresholds the problem has recently been studied by Daniels (1969).


2010 ◽  
Vol 20 (04) ◽  
pp. 1061-1083 ◽  
Author(s):  
QIGUI YANG ◽  
ZHOUCHAO WEI ◽  
GUANRONG CHEN

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4785-4802
Author(s):  
Muhammad Raees ◽  
Matloob Anwar

The present article establishes some results on Hermite-Hadamard type inequalities of coordinated (p1,h1)-(p2,h2)-convex functions by using Katugampola fractional integrals. The results are in generalized form and deduced for various special cases like coordinated pq-convex functions, coordinated (p,s)-convex functions, coordinated s-convex functions and classical case of coordinated convex functions.


Sign in / Sign up

Export Citation Format

Share Document