scholarly journals Adaptive mode decision with residual motion compensation for distributed video coding

Author(s):  
Huynh Van Luong ◽  
Søren Forchhammer ◽  
Jürgen Slowack ◽  
Jan De Cock ◽  
Rik Van de Walle

Distributed video coding (DVC) is a coding paradigm that entails low complexity encoding by exploiting the source statistics at the decoder. To improve the DVC coding efficiency, this paper presents a novel adaptive technique for mode decision to control and take advantage of skip mode and intra mode in DVC initially proposed by Luong et al. in 2013. The adaptive mode decision (AMD) is not only based on quality of key frames but also the rate of Wyner–Ziv (WZ) frames. To improve noise distribution estimation for a more accurate mode decision, a residual motion compensation is proposed to estimate a current noise residue based on a previously decoded frame. The experimental results, integrating AMD in two efficient DVC codecs, show that the proposed AMD DVC significantly improves the rate distortion performance without increasing the encoding complexity. For a GOP size of 2 on the set of six test sequences, the average (Bjøntegaard) bitrate saving of the proposed codec is 35.5% on WZ frames compared with the DISCOVER codec. This saving is mainly achieved by AMD.

Author(s):  
Huynh Van Luong ◽  
Soren Forchhammer ◽  
Jurgen Slowack ◽  
Jan De Cock ◽  
Rik Van de Walle

Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 130 ◽  
Author(s):  
Dinh Trieu Duong ◽  
Huy Phi Cong ◽  
Xiem Hoang Van

Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality.


2011 ◽  
Vol 58-60 ◽  
pp. 2079-2084
Author(s):  
An Hong Wang ◽  
Yi Zheng ◽  
Zhi Hong Li ◽  
Yu Yang Wang

Nowadays, the rate-distortion performance of distributed video coding (DVC) is not satisfied despite its distinct contribution to low-complexity encoding. This paper presents a new residual DVC using an optimized trellis coded quantization (TCQ) to improve the performance of the current schemes. H.264/AVC intra-frame coding is firstly used to obtain the referenced frame, and then the residual between Wyner-Ziv frame and the referenced frame is Wyner-Ziv encoded with a proposed optimized TCQ which consists of the improved quadtree and the improved TCQ, both considering the characters of wavelet coefficients in different sub-bands. Experimental results show that the proposed scheme outperforms the referenced in rate-distortion performance, and the goal of low-complexity encoding is achieved.


2014 ◽  
Vol 519-520 ◽  
pp. 672-675
Author(s):  
Deng Yin Zhang ◽  
Ying Tian Ji ◽  
Xue Mei Wang

The quality of side information (SI) is one of the critical factors which play an important part in the compression performance of Distributed Video Coding (DVC).In this paper, we analyze the algorithm of Motion Compensation Interpolation (MCI) and propose an improving algorithm against its limitation. The algorithm proposed firstly makes each pixel has more than one motion vectors, then picks the best vector out and makes it plays the most important role in motion compensation with weighted average. Through the simulation of different frame sequences, the PSNR of the side information generated by the algorithm proposed in this paper is 0.3-0.7dB higher than that in the original algorithm.


2010 ◽  
Vol 25 (9) ◽  
pp. 660-673 ◽  
Author(s):  
Jürgen Slowack ◽  
Stefaan Mys ◽  
Jozef Škorupa ◽  
Nikos Deligiannis ◽  
Peter Lambert ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Qiuwen Zhang ◽  
Shuaichao Wei ◽  
Rijian Su

Three-dimensional extension of the high efficiency video coding (3D-HEVC) is an emerging international video compression standard for multiview video system applications. Similar to HEVC, a computationally expensive mode decision is performed using all depth levels and prediction modes to select the least rate-distortion (RD) cost for each coding unit (CU). In addition, new tools and intercomponent prediction techniques have been introduced to 3D-HEVC for improving the compression efficiency of the multiview texture videos. These techniques, despite achieving the highest texture video coding efficiency, involve extremely high-complex procedures, thus limiting 3D-HEVC encoders in practical applications. In this paper, a fast texture video coding method based on motion homogeneity is proposed to reduce 3D-HEVC computational complexity. Because the multiview texture videos instantly represent the same scene at the same time (considering that the optimal CU depth level and prediction modes are highly multiview content dependent), it is not efficient to use all depth levels and prediction modes in 3D-HEVC. The motion homogeneity model of a CU is first studied according to the motion vectors and prediction modes from the corresponding CUs. Based on this model, we present three efficient texture video coding approaches, such as the fast depth level range determination, early SKIP/Merge mode decision, and adaptive motion search range adjustment. Experimental results demonstrate that the proposed overall method can save 56.6% encoding time with only trivial coding efficiency degradation.


Author(s):  
Peter Lambert ◽  
Stefaan Mys ◽  
Jozef Škorupa ◽  
Jürgen Slowack ◽  
Rik Van de Walle ◽  
...  

The latest video coding standard (Wiegand, 2003), H.264/AVC, uses variable block sizes ranging from 16x16 to 4x4 to perform motion estimation in inter-frame coding and a rich set of prediction patterns for intra-frame coding. Then a robust RDO (Rate Distortion Optimization) technique is employed to select the best coding mode and reference frame for each macroblock. As a result, H.264/AVC exhibits high coding efficiency compared to older video coding standards [2, 3] and shows significant future promise in the fields of video broadcasting and communication. However, high coding efficiency also carries high computational complexity. Fast mode decision is one of the key techniques to significantly reducing computational complexity for a similar RD (Rate Distortion) performance. This chapter provides an up-to-date critical survey of fast mode decision techniques for the H.264/AVC standard. The motivation for this chapter is twofold: Firstly to provide an up-to-data review of the existing techniques and secondly to offer some insights into the studies of fast mode decision techniques.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1427
Author(s):  
Wei Wang ◽  
Jianhua Chen

In order to effectively improve the quality of side information in distributed video coding, we propose a side information generation scheme based on a coefficient matrix improvement model. The discrete cosine transform coefficient bands of the Wyner–Ziv frame at the encoder side are divided into entropy coding coefficient bands and distributed video coding coefficient bands, and then the coefficients of entropy coding coefficient bands are sampled, which are divided into sampled coefficients and unsampled coefficients. For sampled coefficients, an adaptive arithmetic encoder is used for lossless compression. For unsampled coefficients and the coefficients of distributed video coding coefficient bands, the low density parity check accumulate encoder is used to calculate the parity bits, which are stored in the buffer and transmitted in small amount upon decoder request. At the decoder side, the optical flow method is used to generate the initial side information, and the initial side information is improved according to the sampled coefficients by using the coefficient matrix improvement model. The experimental results demonstrate that the proposed side information generation scheme based on the coefficient matrix improvement model can effectively improve the quality of side information, and the quality of the generated side information is improved by about 0.2–0.4 dB, thereby improving the overall performance of the distributed video coding system.


Sign in / Sign up

Export Citation Format

Share Document