The DAZ gene family and human germ cell development from embryonic stem cells

2009 ◽  
pp. 323-350
Author(s):  
Mark S. Fox ◽  
Renee A. Reijo Pera ◽  
Amander T. Clark
2009 ◽  
Vol 24 (12) ◽  
pp. 3150-3159 ◽  
Author(s):  
B. Aflatoonian ◽  
L. Ruban ◽  
M. Jones ◽  
R. Aflatoonian ◽  
A. Fazeli ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 794 ◽  
Author(s):  
Wei-Fang Chang ◽  
Jie Xu ◽  
Tzu-Ying Lin ◽  
Jing Hsu ◽  
Hsiu-Mei Hsieh-Li ◽  
...  

The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.


2019 ◽  
Vol 102 (3) ◽  
pp. 620-638 ◽  
Author(s):  
Yoshitake Sakai ◽  
Tomonori Nakamura ◽  
Ikuhiro Okamoto ◽  
Sayuri Gyobu-Motani ◽  
Hiroshi Ohta ◽  
...  

Abstract In vitro reconstitution of germ-cell development from pluripotent stem cells (PSCs) has created key opportunities to explore the fundamental mechanisms underlying germ-cell development, particularly in mice and humans. Importantly, such investigations have clarified critical species differences in the mechanisms regulating mouse and human germ-cell development, highlighting the necessity of establishing an in vitro germ-cell development system in other mammals, such as non-human primates. Here, we show that multiple lines of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in cynomolgus monkeys (Macaca fascicularis; cy) can be maintained stably in an undifferentiated state under a defined condition with an inhibitor for WNT signaling, and such PSCs are induced efficiently into primordial germ cell-like cells (PGCLCs) bearing a transcriptome similar to early cyPGCs. Interestingly, the induction kinetics of cyPGCLCs from cyPSCs is faster than that of human (h) PGCLCs from hPSCs, and while the transcriptome dynamics during cyPGCLC induction is relatively similar to that during hPGCLC induction, it is substantially divergent from that during mouse (m) PGCLC induction. Our findings delineate common as well as species-specific traits for PGC specification, creating a foundation for parallel investigations into the mechanism for germ-cell development in mice, monkeys, and humans.


Sign in / Sign up

Export Citation Format

Share Document