spectral enhancement
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Haiyang Pang ◽  
Aiwu Zhang ◽  
Shengnan Yin ◽  
Jiaxin Zhang ◽  
Gang Dong ◽  
...  

Estimating the carbon (C), nitrogen (N), and phosphorus (P) contents of a large-span grassland transect is essential for evaluating ecosystem functioning and monitoring biogeochemical cycles. However, the field measurements are scattered, such that they cannot indicate the continuous gradient change in the grassland transect. Although remote sensing methods have been applied for the estimation of nutrient elements at the local scale in recent years, few studies have considered the effective estimation of C, N, and P contents over large-span grassland transects with complex environment including a variety of grassland types (i.e., meadow, typical grassland, and desert grassland). In this paper, an information enhancement algorithm (involving spectral enhancement, regional enhancement, and feature enhancement) is used to extract the weak information related to C, N, and P. First, the spectral simulation algorithm is used to enhance the spectral information of Sentinel-2 imagery. Then, the enhanced spectra and meteorological data are fused to express regional characteristics and the fractional differential (FD) algorithm is used to extract sensitive spectral features related to C, N, and P, in order to construct a partial least-squares regression (PLSR) model. Finally, the C, N, and P contents are estimated over a West–East grassland transect in Inner Mongolia, China. The results demonstrate that: (i) the contents of C, N, and P in large-span transects can be effectively estimated through use of the information enhancement method involving spectral enhancement, regional feature enhancement, and information enhancement, for which the estimation accuracies (R2) were 0.88, 0.78, and 0.85, respectively. Compared with the estimation results of raw Sentinel-2 imagery, the RMSE was reduced by 3.42 g/m2, 0.14 g/m2, and 13.73 mg/m2, respectively; and (ii) the continuous change trend and spatial distribution characteristics of C, N, and P contents in the west–east transect of the Inner Mongolia Plateau were obtained, which showed decreasing trends in C, N, and P contents from east to west and the characteristics of meadow > typical grassland > desert grassland. Thus, the information enhancement algorithm can help to improve estimates of C, N, and P contents when considering large-span grassland transects.


2021 ◽  
Vol 2 (8) ◽  
pp. 2170024
Author(s):  
Ezgi Sahin ◽  
Andrea Blanco-Redondo ◽  
Byoung-Uk Sohn ◽  
Yanmei Cao ◽  
George F. R. Chen ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. 307-313
Author(s):  
Mfoniso Asuquo Enoh ◽  
Richard Ebere Njoku ◽  
Esomchukwu Chinagorom Igbokwe

Hydrocarbon micro – seepages are light hydrocarbon that cause oxidation – reduction reaction on the earth’s surface, resulting in alterations and anomalies such as red bed bleaching, ferrous iron enrichment and increase in the concentration of clay minerals and carbonate in overlying soils and sediments. Remote sensing has become a valuable tool in hydrocarbon micro – seepage studies and have been successfully used to interpret surface alterations and anomalies of minerals. In this study, Landsat 7 ETM+ remotely sensed data was utilized for interpreting the onshore hydrocarbon micro – seepage induced alterations zone in Ugwueme. Spectral enhancements techniques such as the principal component analysis (PCA), band ratio (BR) and false color composite (FCC) were adopted for delineating alteration zones. With Landsat 7 ETM+ band selection, and for PCA, the 1457PC3, 1345PC2 and 3457PC4 are the most suitable PC image for spectral enhancement of ferric iron, ferrous iron and clay minerals. Band ratio index such as (3/1), (7/5) and (2+5)/(3+4) also yields better enhancement for anomalous micro – seepage. The study shows that PCA, BR, FCC are good spectral enhancement techniques for interpreting hydrocarbon micro – seepage alterations in overlying soils and sediments.


Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Yonggyu Choi ◽  
Yeonghwa Jo ◽  
Soon Jee Seol ◽  
Joongmoo Byun ◽  
Young Kim

The resolution of seismic data dictates the ability to identify individual features or details in a given image, and the temporal (vertical) resolution is a function of the frequency content of a signal. To improve thin-bed resolution, broadening of the frequency spectrum is required; this has been one of the major objectives in seismic data processing. Recently, many researchers have proposed machine learning based resolution enhancement and showed their applicability. However, since the performance of machine learning depends on what the model has learned, output from training data with features different from the target field data may be poor. Thus, we present a machine learning based spectral enhancement technique considering features of seismic field data. We used a convolutional U-Net model, which preserves the temporal connectivity and resolution of the input data, and generated numerous synthetic input traces and their corresponding spectrally broadened traces for training the model. A priori information from field data, such as the estimated source wavelet and reflectivity distribution, was considered when generating the input data for complementing the field features. Using synthetic tests and field post-stack seismic data examples, we showed that the trained model with a priori information outperforms the models trained without a priori information in terms of the accuracy of enhanced signals. In addition, our new spectral enhancing method was verified through the application to the high-cut filtered data and its promising features were presented through the comparison with well log data.


2021 ◽  
pp. 2100107
Author(s):  
Ezgi Sahin ◽  
Andrea Blanco-Redondo ◽  
Byoung-Uk Sohn ◽  
Yanmei Cao ◽  
George F. R. Chen ◽  
...  

2021 ◽  
Author(s):  
Muhammad Sajid ◽  
Ahmad Riza Ghazali

Abstract Seismic resolution plays an important role not only in interpretation and reservoir characterization but also in seismic inversion and seismic attributes analysis. The resolution depends on several factors, including seismic frequency bandwidth, dominant frequency, and layer velocity. This paper presents a spectral resolution enhancement approach that is based on Non-stationary Differential Resolution (NSDR) that honors the local structural dip, better preserves amplitude and improves target-oriented seismic interpretation. The proposed technology is applied to both 2D and 3D seismic volumes and findings are compared with the oil industry common spectral enhancement algorithms. We demonstrate the target-oriented dip steering spectral enhancement method on two 3D field datasets and compare the resulting outcome with those obtained by conventional techniques. It is found that thinly layered subsurface geological features with steeply dipping beds are better defined, with artifacts from the conflicting dips removed.


2021 ◽  
Vol 50 (1) ◽  
pp. 20200137-20200137
Author(s):  
张丽丽 Lili Zhang ◽  
杨彦伟 Yanwei Yang

2021 ◽  
Vol 50 (1) ◽  
pp. 20200137-20200137
Author(s):  
张丽丽 Lili Zhang ◽  
杨彦伟 Yanwei Yang

Sign in / Sign up

Export Citation Format

Share Document