Methods for probing magnetic fields in diffuse astrophysical plasmas

2016 ◽  
pp. 9-32
Author(s):  
Philipp P. Kronberg
2015 ◽  
Vol 112 (27) ◽  
pp. 8211-8215 ◽  
Author(s):  
Jena Meinecke ◽  
Petros Tzeferacos ◽  
Anthony Bell ◽  
Robert Bingham ◽  
Robert Clarke ◽  
...  

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.


2016 ◽  
Vol 82 (6) ◽  
Author(s):  
Christoph Federrath

Magnetic fields play an important role in astrophysical accretion discs and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here, I start by reviewing recent advances in the numerical and theoretical modelling of the turbulent dynamo, which may explain the origin of galactic and intergalactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simulations from which I determine the growth of the turbulent (un-ordered) magnetic field component ($B_{turb}$) in the presence of weak and strong guide fields ($B_{0}$). I vary $B_{0}$ over five orders of magnitude and find that the dependence of $B_{turb}$ on $B_{0}$ is relatively weak, and can be explained with a simple theoretical model in which the turbulence provides the energy to amplify $B_{turb}$. Finally, I discuss some important implications of magnetic fields for the structure of accretion discs, the launching of jets and the star-formation rate of interstellar clouds.


2016 ◽  
Vol 113 (15) ◽  
pp. 3950-3953 ◽  
Author(s):  
François Rincon ◽  
Francesco Califano ◽  
Alexander A. Schekochihin ◽  
Francesco Valentini

Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.


2020 ◽  
Vol 13 ◽  
pp. 81
Author(s):  
Th. E. Liolios

This paper shows that ultrastrong magnetic fields (such as those of magnetars) and dense astrophysical plasmas can reduce the half life of alpha decaying nuclei by many orders of magnitude. In such environments the conventional Geiger-Nuttall law is modifed so that all relevant half lives are shifted to dramatically lower values.


2002 ◽  
Vol 67 (2-3) ◽  
pp. 129-138 ◽  
Author(s):  
A. ROY CHOWDHURY ◽  
M. KHURSHED ALAM ◽  
K. ROY CHOWDHURY ◽  
S. N. PAUL ◽  
B. A. BEGUM

The generation of magnetic fields due to ponderomotive forces in astrophysical plasma consisting of electrons, ions and positrons is investigated theoretically. It is seen that collisional or non-collisional interactions (between electromagnetic waves and plasma particles) via ponderomotive forces in an inhomogeneous plasma can excite a magnetic field. The growth rate of the magnetic field is illustrated graphically for different values of the temperature and concentration of positrons in the plasma.


Author(s):  
Kenichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose L. Gomez ◽  
Ioana Dutan ◽  
Athina Meli ◽  
...  

The Particle-In-Cell (PIC) method has been developed in order to investigate microscopic phenomena, and with the advances of computing power, newly developed codes have been used for several fields such as astrophysical, magnetospheric, and solar plasmas. Its applications have grown extensively with large computing powers available such as Pleiades and Blue Water systems in the US. For astrophysical plasmas research PIC method has been utilized in several topics such as reconnection, pulsar, non-relativistic shocks, relativistic shocks, relativistic jets, etc. As one of the research topics in astrophysics, PIC simulations of relativistic jets are reviewed up to the present time with the emphasis on the physics involved in the simulations. In this review we summarize PIC simulations starting with the Weibel instability in slab models of jets and then, continuing with recent progresses on global jets with helical magnetic fields including kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.


2009 ◽  
Vol 76 (1) ◽  
pp. 1-5 ◽  
Author(s):  
NITIN SHUKLA ◽  
P. K. SHUKLA

AbstractWe present a dispersion relation for a plane-polarized electromagnetic wave in plasmas composed of cold electrons, relativistically hot electrons and bi-Maxwellian protons. It is shown that the free energy in proton-temperature anisotropy drives purely growing electromagnetic modes in our three-component plasma. Expressions for the growth rates and thresholds of instabilities are presented. The present results are relevant for explaining the origin of spontaneously generated magnetic fields in laboratory and astrophysical plasmas.


Sign in / Sign up

Export Citation Format

Share Document