scholarly journals P.079 Development of a performance model for virtual reality tumor resections

Author(s):  
R Sawaya ◽  
G Alsideiri ◽  
A Bugdadi ◽  
A Winkler-Schwartz ◽  
H Azarnoush ◽  
...  

Background: This work proposes a hypothetical model that integrates human factors (e.g. inherent ability and acquired expertise) and task factors (e.g. pre-procedural data, visual and haptic information) to better understand the hand ergonomics adaptation needed for optimal safety and efficiency during simulated brain tumor resections. Methods: Hand ergonomics of neurosurgeons, residents and medical students were assessed during simulated brain tumors resection on the NeuroVR virtual reality neurosurgical simulation platform. Spatial distribution of time expended, force applied, and tumor volume removed, and other metrics were analyzed in each tumor quadrant (Q1 to Q4). Results: Significant differences were observed between the most favorable hand ergonomics condition (Q2) and the unfavorable hand ergonomics condition (Q4). Neurosurgeons applied more total force, more mean force, and removed less tumor per unit of force applied in Q4. However, total volume removed was not significant between the two quadrants indicating hand ergonomics adaptation in order to maximize tumor removal. In comparison, hand ergonomics of medical students remained unchanged in all quadrants, indicating a learning phenomenon. Conclusions: Neurosurgeons are more capable of adapting their hand ergonomics during simulated brain tumor resections. Our proposed hypothetical model integrates our findings with the literature and highlights the importance of experience in the acquisition of adaptive hand ergonomics.

2019 ◽  
Vol 131 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Robin Sawaya ◽  
Ghusn Alsideiri ◽  
Abdulgadir Bugdadi ◽  
Alexander Winkler-Schwartz ◽  
Hamed Azarnoush ◽  
...  

OBJECTIVEPrevious work from the authors has shown that hand ergonomics plays an important role in surgical psychomotor performance during virtual reality brain tumor resections. In the current study they propose a hypothetical model that integrates the human and task factors at play during simulated brain tumor resections to better understand the hand ergonomics needed for optimal safety and efficiency. They hypothesize that 1) experts (neurosurgeons), compared to novices (residents and medical students), spend a greater proportion of their time in direct contact with critical tumor areas; 2) hand ergonomic conditions (most favorable to unfavorable) prompt participants to adapt in order to optimize tumor resection; and 3) hand ergonomic adaptation is acquired with increasing expertise.METHODSIn an earlier study, experts (neurosurgeons) and novices (residents and medical students) were instructed to resect simulated brain tumors on the NeuroVR (formerly NeuroTouch) virtual reality neurosurgical simulation platform. For the present study, the simulated tumors were divided into four quadrants (Q1 to Q4) to assess hand ergonomics at various levels of difficulty. The spatial distribution of time expended, force applied, and tumor volume removed was analyzed for each participant group (total of 22 participants).RESULTSNeurosurgeons spent a significantly greater percentage of their time in direct contact with critical tumor areas. Under the favorable hand ergonomic conditions of Q1 and Q3, neurosurgeons and senior residents spent significantly more time in Q1 than in Q3. Although forces applied in these quadrants were similar, neurosurgeons, having spent more time in Q1, removed significantly more tumor in Q1 than in Q3. In a comparison of the most favorable (Q2) to unfavorable (Q4) hand ergonomic conditions, neurosurgeons adapted the forces applied in each quadrant to resect similar tumor volumes. Differences between Q2 and Q4 were emphasized in measures of force applied per second, tumor volume removed per second, and tumor volume removed per unit of force applied. In contrast, the hand ergonomics of medical students did not vary across quadrants, indicating the existence of an “adaptive capacity” in neurosurgeons.CONCLUSIONSThe study results confirm the experts’ (neurosurgeons) greater capacity to adapt their hand ergonomics during simulated neurosurgical tasks. The proposed hypothetical model integrates the study findings with various human and task factors that highlight the importance of learning in the acquisition of hand ergonomic adaptation.


Author(s):  
R Sawaya ◽  
R Yilmaz ◽  
A Bugdadi ◽  
A Winkler-Schwartz ◽  
H Azarnoush ◽  
...  

Background: Performance Heatmaps were designed to visualize the spatial distribution of performance metrics during resection of complex tumors. This novel methodology provides experts (neurosurgeons) and trainees (residents and medical students) with visual feedback on their neurosurgical performance during operative procedures. Methods: Neurosurgeons (NS), senior residents (SR), junior residents (JR) and medical students (MS) performed resection of a complex tumor on the NeuroVR simulation platform. Metrics including time spent, force applied, and tumor volume removed were used to create Performance Heatmaps for each group. Results: During complex operative procedures, greater expertise correlated increased time spent in critical areas (NS = 121.0 s, SR = 103.0 s, JR = 86.1 s, MS = 84.9 s), increased force application (NS = 387 N, SR = 317 N, JR = 340 N, MS = 304 N), and increased tumor removal (NS = .096 cc, SR = .081 cc, JR = .074 cc, MS = .069 cc). Conclusions: Performance Heatmaps further our understanding of neurosurgical expertise by identifying key differences between experts (neurosurgeons) and trainees (residents and medical students). With the adoption of competency-based curricula, intuitive feedback tools will prove essential for trainees seeking surgical mastery.


Author(s):  
A Winkler-Schwartz ◽  
J Fares ◽  
B Khalid ◽  
M Baggiani ◽  
S Christie ◽  
...  

Background: The availability of virtual reality (VR) surgical simulators affords the opportunity to assess the influence of stress on neurosurgical operative performance in a controlled laboratory environment. This study sought to examine the effect of a stressful VR neurosurgical task on the subjective anxiety ratings of participants with varying levels of surgical expertise. Methods: Twenty four participants comprised of six staff neurosurgeons, six senior neurosurgical residents (PGY4-6), six junior neurosurgical residents (PGY1-3), and six senior medical students took part in a bimanual VR tumor removal task with a component of sudden uncontrollable intra-operative bleeding. State Trait Anxiety Inventory (STAI) questionnaires were completed immediately pre and post the stress stimulus. The STAI questionnaire consisted of six items (calm, tense, upset, relaxed, content and worried) measured on a Likert scale. Results: Significant increases in subjective anxiety ratings were noted in junior residents (p=0.005) and medical students (p=0.025) while no significant changes were observed for staff and senior neurosurgical residents. Conclusions: Staff and senior residents more effectively mitigate stress compared to junior colleagues in a VR operative environment. Further physiological correlates are needed to determine whether this increased anxiety is paralleled by physiological arousal and altered surgical performance.


Author(s):  
Gennadiy A. Katsevman ◽  
Walter Greenleaf ◽  
Ricardo García-García ◽  
Maria Victoria Perea ◽  
Valentina Ladera ◽  
...  

2021 ◽  
pp. 019459982110328
Author(s):  
Tobias Albrecht ◽  
Christoph Nikendei ◽  
Mark Praetorius

Objective Otologic diseases are common in all age groups and can significantly impair the function of this important sensory organ. To make a correct diagnosis, the correct handling of the otoscope and a correctly performed examination are essential. A virtual reality simulator could make it easier to teach this difficult-to-teach skill. The aim of this study was to assess the face, content, and construct validity of the novel virtual reality otoscopy simulator and the applicability to otologic training. Study Design Face and content validity was assessed with a questionnaire. Construct validity was assessed in a prospectively designed controlled trial. Setting Training for medical students at a tertiary referral center. Method The questionnaire used a 6-point Likert scale. The otoscopy was rated with a modified Objective Structured Assessment of Technical Skills. Time to complete the task and the percentage of the assessed eardrum surface were recorded. Results The realism of the simulator and the applicability to medical training were assessed across several items. The ratings suggested good face and content validity as well as usefulness and functionality of the simulator. The otolaryngologists significantly outperformed the student group in all categories measured (P < .0001), suggesting construct validity of the simulator. Conclusion In this study, we could demonstrate face, content, and construct validity for a novel high-fidelity virtual reality otoscopy simulator. The results encourage the use of the otoscopy simulator as a complementary tool to traditional teaching methods in a curriculum for medical students.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meysam Siyah Mansoory ◽  
Mohammad Rasool Khazaei ◽  
Seyyed Mohsen Azizi ◽  
Elham Niromand

Abstract Background New approaches to e-learning and the use of virtual reality technology and serious game in medical education are on the rise. Therefore, the purpose of this study was to compare the effectiveness of lecture method and virtual reality-based serious gaming (VRBSG) method on students learning outcomes about the approach to coma. Methods We adopted a randomized trial method for this study and selected 50 medical students dividing them into experimental and control groups. Students’ learning outcome was measured with a 10-item test. Serious game usability scale was used to evaluate the usability of the serious game. Descriptive and inferential statistics were used for data analysis by SPSS-22 software. Results Students’ familiarity with e-learning and VRBSG was low. The mean usability of a VRBSG was 126.78 ± 10.34 out of 150. The majority of students were eager to be instructed through VRBSG. The mean score of learning outcomes in the experimental group was significantly higher than the control group (t = − 2.457, P = 0.019). Conclusion Students’ learning outcomes in the VRBSG group in the test approach to coma were significantly better than the lecture group. The usability of the serious game instruction method was high. Taken together, instruction through VRBSG had an effective role in medical students’ learning.


Author(s):  
Hamed Azarnoush ◽  
Gmaan Alzhrani ◽  
Alexander Winkler-Schwartz ◽  
Fahad Alotaibi ◽  
Nicholas Gelinas-Phaneuf ◽  
...  

2018 ◽  
Vol 57 ◽  
pp. 105-110
Author(s):  
Takeru Umemura ◽  
Shigeru Nishizawa ◽  
Yoshiteru Nakano ◽  
Takeshi Saito ◽  
Takehiro Kitagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document