scholarly journals The tissue proteome of dorsal root ganglia in Friedreich ataxia

Author(s):  
AH Koeppen ◽  
AM Travis ◽  
J Qian ◽  
JE Mazurkiewicz ◽  
BB Gelman ◽  
...  

Dorsal root ganglia (DRG) at all levels of the spinal cord are a prominent target of Friedreich ataxia (FA). The lesions include hypoplasia of neurons, proliferation of satellite cells, infiltration by IBA- 1-reactive monocytes, and formation of residual nodules. Paucity and smallness of DRG neurons account for the lack of large myelinated axons in dorsal roots and sensory peripheral nerves. The lack of myelin in dorsal roots can be attributed to low levels of neuregulin 1 type III (NRG1[III]). Lysates of 13 DRG of genetically confirmed FA patients were analyzed by antibody microarray with 878 different validated antibodies that target structural and signaling proteins, and by Western blots. KIT and mTOR, two proteins involved in cellular proliferation, were significantly upregulated in the DRG of FA. KIT is a transmembrane receptor that dimerizes when it binds two molecules of stem cell factor (SCF) in its extracellular domain and becomes activated as protein tyrosine kinase. Immunohistochemistry with anti-KIT generated reaction product in satellite cells of normal DRG and prominent labeling of these cells in FA that co-localized with SCF on double- label immunofluorescence; SCF was present in S100-positive satellite cells rather than monocytes. Immunohistochemical reaction product of mTOR and other mTOR complex proteins, such as hamartin (TSC1), tuberin (TSC2), raptor (mTOR complex 1) and rictor (mTOR complex 2) was also present in satellite cells of normal DRG and DRG of FA. Antibodies to two downstream proteins that are considered to be indicators of mTOR activity, P70 S6K and 4E-binding protein 1, revealed no reaction product in DRG of FA. TSC1, TSC2, and mTOR are best known from their roles in tuberous sclerosis, but expression of these proteins, and KIT, in DRG may contribute to signaling cascades underlying the proliferation of satellite cells in FA.LEARNING OBJECTIVESThis presentation will enable the learner to: 1.Discuss cellular proliferation in the pathogenesis of the DRG lesion in Friedreich ataxiaCONFLICT OF INTERESTAHK is a consultant to PTC Therapeutics of South Plainfield, NJ USA. SP and CS are majority owners of Kinexus.

2008 ◽  
Vol 71 (11) ◽  
pp. 2307-2311 ◽  
Author(s):  
SCOTT HAFNER ◽  
MARY T. SUTTON ◽  
JOSEPH HILL ◽  
PATRICK C. McCASKEY ◽  
LYNDA COLLINS KELLEY

A method is described for the identification of dorsal root ganglia (DRG)–associated sensory neurons within advanced meat recovery (AMR) product derived from bovine vertebral columns. This method relies on the unique microanatomy of sensory neurons and immunohistochemical staining, primarily for glial fibrillary acidic protein. Sensory neurons are variably sized unipolar neurons, exhibiting a single-cell process that is rarely seen in histologic sections. These neurons are surrounded by a prominent ring of glial fibrillary acidic protein–positive satellite cells that produce a distinctive and readily identifiable staining pattern in histologic sections. Fragmented DRG were detected to the 0.25% level in samples of ground beef or nonvertebral-origin AMR product spiked with these sensory ganglia. Similarly examined commercially produced nonvertebral-origin AMR product (n = 157) did not contain sensory ganglia, while 3.3% of vertebral-origin AMR product (n = 364) contained fragmented DRG.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Joseph Mazurkiewicz ◽  
R Liane Ramirez ◽  
Arnulf Koeppen

2021 ◽  
Vol 92 (4) ◽  
pp. 398-406 ◽  
Author(s):  
Guillaume Fargeot ◽  
Andoni Echaniz-Laguna

Degeneration of dorsal root ganglia (DRG) and its central and peripheral projections provokes sensory neuronopathy (SN), a rare disorder with multiple genetic and acquired causes. Clinically, patients with SN usually present with proprioceptive ataxia, patchy and asymmetric sensory abnormalities, widespread areflexia and no weakness. Classic causes of SN include cancer, Sjögren’s syndrome, vitamin deficiency, chemotherapy, mitochondrial disorders and Friedreich ataxia. More recently, new genetic and dysimmune disorders associated with SN have been described, including RFC1 gene-linked cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) and anti-FGFR3 antibodies. In this review, we detail the pathophysiology of DRG degeneration, and the genetic and acquired causes of SN, with a special focus on the recently described CANVAS and anti-FGFR3 antibodies. We also propose a user-friendly and easily implemented SN diagnostic strategy.


Sign in / Sign up

Export Citation Format

Share Document