scholarly journals 2327 Decoding/encoding somatosensation from the hand area of the human primary somatosensory (S1) cortex for a closed-loop motor/sensory brain-machine interface (BMI)

2018 ◽  
Vol 2 (S1) ◽  
pp. 8-8
Author(s):  
Brian Lee ◽  
Richard Andersen ◽  
Helena Chui ◽  
William Mack

OBJECTIVES/SPECIFIC AIMS: A brain-machine interface (BMI) is a device implanted into the brain of a paralyzed or injured patient to control an external assistive device, such as a cursor on a computer screen, a motorized wheelchair, or a robotic limb. We hypothesize we can utilize electrical stimulation of subdural electrocorticography (ECoG) electrodes as a method of generating the percepts of somatosensation such as vibration, temperature, or proprioception. METHODS/STUDY POPULATION: There will be 10 subjects, who are informed, willing, and consented epilepsy patients undergoing initial surgery for placement of subdural ECoG electrodes in the brain for seizure monitoring. ECoG will be used as a platform for recording high-resolution local field potentials during real-touch behavioral tasks. In addition, ECoG will also be used to electrically stimulate the human cerebral cortex in order to map and understand how varying stimulation parameters produce percepts of sensation. RESULTS/ANTICIPATED RESULTS: To determine how tactile and proprioceptive signals are integrated in S1, we will perform spectral analysis of the broadband local field potentials to look for increased power in specific frequency bands in the ECoG recordings while touching or moving the hand. To explore generating artificial sensation, the subject will be asked to perform a variety of tasks with and without the aid of stimulation. We anticipate the subject’s performance will be enhanced with the addition of artificial sensation. DISCUSSION/SIGNIFICANCE OF IMPACT: Many patients might benefit from a BMI, such as those with stroke, amputation, spinal cord injury, or brain trauma. The current generation of BMI devices are guided by visual feedback alone. However, without somatosensory feedback, even the most basic limb movements are difficult to perform in a fluid and natural manner. The results from this project will be crucial to developing a closed loop motor/sensory BMI.

2015 ◽  
Vol 12 (3) ◽  
pp. 036009 ◽  
Author(s):  
Sergey D Stavisky ◽  
Jonathan C Kao ◽  
Paul Nuyujukian ◽  
Stephen I Ryu ◽  
Krishna V Shenoy

2013 ◽  
Vol 10 (5) ◽  
pp. 056005 ◽  
Author(s):  
Robert D Flint ◽  
Zachary A Wright ◽  
Michael R Scheid ◽  
Marc W Slutzky

2019 ◽  
Vol 116 (52) ◽  
pp. 26274-26279 ◽  
Author(s):  
Richard A. Andersen ◽  
Tyson Aflalo ◽  
Spencer Kellis

A dramatic example of translational monkey research is the development of neural prosthetics for assisting paralyzed patients. A neuroprosthesis consists of implanted electrodes that can record the intended movement of a paralyzed part of the body, a computer algorithm that decodes the intended movement, and an assistive device such as a robot limb or computer that is controlled by these intended movement signals. This type of neuroprosthetic system is also referred to as a brain–machine interface (BMI) since it interfaces the brain with an external machine. In this review, we will concentrate on BMIs in which microelectrode recording arrays are implanted in the posterior parietal cortex (PPC), a high-level cortical area in both humans and monkeys that represents intentions to move. This review will first discuss the basic science research performed in healthy monkeys that established PPC as a good source of intention signals. Next, it will describe the first PPC implants in human patients with tetraplegia from spinal cord injury. From these patients the goals of movements could be quickly decoded, and the rich number of action variables found in PPC indicates that it is an appropriate BMI site for a very wide range of neuroprosthetic applications. We will discuss research on learning to use BMIs in monkeys and humans and the advances that are still needed, requiring both monkey and human research to enable BMIs to be readily available in the clinic.


Sign in / Sign up

Export Citation Format

Share Document