scholarly journals 3348 Structural Determinants of Neoantigen Immunogenicity for Cancer Therapy

2019 ◽  
Vol 3 (s1) ◽  
pp. 22-22
Author(s):  
Jason Devlin ◽  
Sara Bobisse ◽  
Alexandre Harari ◽  
Brian Baker

OBJECTIVES/SPECIFIC AIMS: We are exploring the structure of the interaction between an immunogenic neoantigen and a T cell receptor (TCR) that recognizes the neoantigen while tolerating the counterpart self antigen. No structural example exists to date of how a TCR can discriminate between a neoantigen and the self antigen. We aim to determine the structural and biophysical features that underlie the immunogenicity for this neoantigen, and the features we determine are likely to be present in other immunogenic neoantigens. Algorithms to predict the immunogenicity of neoantigens are available, but do not incorporate structural or biophysical factors. We aim to improve these methods for immunogenic neoantigen prediction by determining structural and biophysical factors that result in recognition by the immune system. METHODS/STUDY POPULATION: Recombinant protein expression, production, and purification. Protein x-ray crystallography. Biophysical protein-protein binding experiments RESULTS/ANTICIPATED RESULTS: The T cell receptor (TCR) bound to the neoantigen with an affinity 15-fold higher than the self antigen. The leucine to phenylalanine mutation occurs at position 8 of a 9-amino acid long peptide antigen. This position is typically in the interface bound by the T cell receptor. The structures of the unbound neoantigen and self antigen showed that the mutated residue was in the TCR interface. Additionally we noted a change in the side chain position of a proximal tryptophan, potentially due to clashes with the larger phenylalanine residue. The structure of the TCR bound to the neoantigen showed that the TCR interacted with the tryptophan in the mutation-induced conformation and with the phenylalanine residue. Thus the mutation may be altering TCR binding affinity by interactions of the residue itself with the TCR, and by locking the proximal tryptophan residue in an optimal position to interact with the TCR. We are testing the contributions of each of these factors to the overall affinity change. Hydrophobicity has been linked to immunogenicity, so mutations that increase hydrophobicity compared to the self antigen are likely to be immunogenic. However, leucine and phenylalanine are similar on hydrophobicity scales. On the other hand, a side chain rotation is unlikely to represent a large energy barrier. Therefore, we hypothesize that another property of the phenylalanine, such as size or aromaticity, is driving the affinity difference. DISCUSSION/SIGNIFICANCE OF IMPACT: Traditional forms of cancer therapy do not specifically target cancer cells, and their toxicity to healthy cells limits their effectiveness. Immunotherapy, which involves orchestrating a specific anti-cancer immune response, is now an established cancer therapy. Several forms of immunotherapy target “neoantigens,” which are derived from mutated proteins in cancer, and are therefore are cancer-specific. Neoantigens represent a foothold that can allow the immune system to distinguish between cancer cells and healthy cells, and thus specifically target cancer cells for destruction while imparting no activity toward healthy cells that lack the neoantigen. Most cancer mutations that result in neoantigens arise from random passenger mutations in cancer and will be different among patients. Neoantigen-based cancer therapies are thus a precision medicine technique. The quality of neoantigens to induce an immune response (immunogenicity), which relates to how likely they are to be presented to the immune system and recognized as foreign, has been shown to be a critical factor in predicting the outcome of immunotherapy treatment. We are investigating, on a structural and biophysical level, features that may increase the likelihood of a neoantigen being recognized as foreign by the immune system. The structural insight we gain can be incorporated into algorithms that predict neoantigens from cancer exome sequencing for patient-specific identification of immunogenic neoantigens for immunotherapeutic intervention.

2019 ◽  
Vol 141 ◽  
pp. 47-54 ◽  
Author(s):  
Daniel Getts ◽  
Robert Hofmeister ◽  
Alfonso Quintás-Cardama

1997 ◽  
Vol 186 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Maresa Wick ◽  
Purnima Dubey ◽  
Hartmut Koeppen ◽  
Christopher T. Siegel ◽  
Patrick E. Fields ◽  
...  

One enigma in tumor immunology is why animals bearing malignant grafts can reject normal grafts that express the same nonself-antigen. An explanation for this phenomenon could be that different T cell clones react to the normal graft and the malignant cells, respectively, and only the tumor-reactive clonotypes may be affected by the growing tumor. To test this hypothesis, we used a T cell receptor transgenic mouse in which essentially all CD8+ T cells are specific for a closely related set of self-peptides presented on the MHC class I molecule Ld. We find that the tumor expressed Ld in the T cell receptor transgenic mice but grew, while the Ld-positive skin was rejected. Thus, despite an abundance of antigen-specific T cells, the malignant tissue grew while normal tissue expressing the same epitopes was rejected. Therefore, systemic T cell exhaustion or anergy was not responsible for the growth of the antigenic cancer cells. Expression of costimulatory molecules on the tumor cells after transfection and preimmunization by full-thickness skin grafts was required for rejection of a subsequent tumor challenge, but there was no detectable effect of active immunization once the tumor was established. Thus, the failure of established tumors to attract and activate tumor-specific T cells at the tumor site may be a major obstacle for preventive or therapeutic vaccination against antigenic cancer.


2017 ◽  
Author(s):  
Tatsuo Matsuda ◽  
Taigo Kato ◽  
Yuji Ikeda ◽  
Matthias Leisegang ◽  
Sachiko Yoshimura ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3433-3440 ◽  
Author(s):  
Wing-Shing Cheng ◽  
Valeria Giandomenico ◽  
Ira Pastan ◽  
Magnus Essand

Abstract TARP (T cell receptor γ-chain alternate reading frame protein) is uniquely expressed in males in prostate epithelial cells and prostate cancer cells. Here we demonstrate that TARP expression is regulated by testosterone at the transcriptional level through specific binding of androgen receptor to an androgen response element in the proximal TARP promoter. We further demonstrate that the promoter specifically initiates reporter gene expression in TARP-positive prostate cancer cell lines. To develop a regulatory sequence for prostate-specific gene expression, we constructed a chimeric sequence consisting of the TARP promoter and the prostate-specific antigen (PSA) enhancer. We found that in the prostatic adenocarcinoma cell line LNCaP, the transcriptional activity of the regulatory sequence consisting of a TARP promoter and PSA enhancer is 20 times higher than the activity of a regulatory sequence consisting of the PSA promoter and PSA enhancer. Thus, our studies define a regulatory sequence that may be used to restrict expression of therapeutic genes to prostate cancer cells and may therefore play a role in prostate cancer gene therapy.


2019 ◽  
Vol 40 (6) ◽  
pp. 465-469 ◽  
Author(s):  
Ashley L. Devonshire ◽  
Melanie Makhija

Primary immunodeficiency diseases are inherited defects of the innate or adaptive arms of the immune system that lead to an increase in the incidence, frequency, or severity of infections and/or immune dysregulation. There may be defects in the adaptive arm of the immune system, including combined immunodeficiencies and antibody deficiency syndromes, or abnormalities in innate immunity, such as defects of phagocytes, the complement pathway, or toll-like receptor mediated signaling. Recurrent sinopulmonary infections with encapsulated bacteria such as Haemophilus influenzae type B or Streptococcus pneumoniae may be characteristic of an antibody deficiency syndrome. Frequent viral, fungal, or protozoal infections may suggest T lymphocyte impairment. Multiple Staphylococcus skin infections and fungal infections may imply neutrophil dysfunction or the Hyper-IgE syndrome, and recurrent Neisseria infection is a characteristic manifestation of late complement component (C5‐9, or the membrane attack complex) defects. Recurrent viral or pyogenic bacterial infections, often without the presence of a significant inflammatory response, suggest a defect in toll-like receptor signaling. Mycobacterial infections are characteristic of defects in the interleukin (IL) 12/interferon γ pathway. Screening of newborns for T-cell lymphopenia by using polymerase chain reaction to amplify T-cell receptor excision circles, which are formed when a T cell rearranges the variable region of its receptor, serves as a surrogate for newly synthesized naive T cells. Because of very low numbers of T-cell receptor excision circles, severe combined immunodeficiency, 22q11.2 syndrome, and other causes of T-cell lymphopenia have been identified in newborns.


2006 ◽  
Vol 7 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Chyi-Song Hsieh ◽  
Ye Zheng ◽  
Yuqiong Liang ◽  
Jason D Fontenot ◽  
Alexander Y Rudensky

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4944-4944
Author(s):  
Bryan Howie ◽  
Harlan Robins ◽  
Christopher S Carlson

Abstract B and T lymphocytes are effector cells of the adaptive immune system. These cells express surface receptors that bind a huge variety of antigens, and together they comprise a person’s immune repertoire. A diverse repertoire is essential for mounting robust immune responses against a wide range of pathogens, and repertoire diversity affects the probability that DNA sequencing can uniquely tag a clonally expanded population of cells for the detection of minimum residual disease (MRD) during cancer treatment. Immune repertoire diversity arises partly through the combinatorial splicing of gene segments from the variable (V), diversity (D), and joining (J) regions of a B or T cell receptor locus. Much additional diversity is created through the stochastic insertion and deletion of nucleotides at the splice junctions, and by somatic hypermutation (SHM) in maturing lymphocytes. The generation of junctional diversity is an important part of this process, but it may be constrained by the underlying biological mechanisms. To explore the landscape of junctional diversity among immune receptor loci, we developed a likelihood model that can annotate VDJ junctions in the presence of SHM and compute the probability that a given receptor sequence was generated only once in a person’s repertoire, which is essential for tracking MRD. Using high-throughput sequencing data from several individuals and a range of receptor loci, we identify mechanistic constraints that limit B and T cell receptor diversity. For example, we show that the usual variability in CDR3 length is reduced at the immunoglobulin kappa (IgK) locus, and we connect this finding to sequence motifs that constrain nucleotide deletion at the ends of IgK gene segments. Our findings will inform future genetic studies of the adaptive immune system, and they provide quantitative guidance for deciding which cancer clones can be tracked for reliable MRD detection. Disclosures: Howie: Adaptive Biotechnologies: Employment, Equity Ownership. Robins:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties. Carlson:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document