scholarly journals The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break

Author(s):  
A.A. Dzhalilov ◽  
J.J. Karimov

Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.


Author(s):  
Utkir A. Safarov

We study a conjugacy between two critical circle homeomorphisms with irrational rotation number. Let fi, i = 1, 2 be a C3 circle homeomorphisms with critical point x(i) cr of the order 2mi + 1. We prove that if 2m1 + 1 ̸= 2m2 + 1, then conjugating between f1 and f2 is a singular function. Keywords: circle homeomorphism, critical point, conjugating map, rotation number, singular function



Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5549-5563
Author(s):  
Necip Simsek ◽  
Akhtam Dzhalilov ◽  
Emilio Musso

We study circle homeomorphisms f ? C2(S1\{xb}) whose rotation number ?f is irrational, with a single break point xb at which f' has a jump discontinuity. We prove that the behavior of the ratios of the lengths of any two adjacent intervals of the dynamical partition depends on the size of break and on the continued fraction decomposition of ?f. We also prove a result analogous to Yoccoz?s lemma on the asymptotic behaviour of the lengths of the intervals of trajectories of the renormalization transformation Rn(f).



2012 ◽  
Vol 34 (2) ◽  
pp. 423-456 ◽  
Author(s):  
ABDELHAMID ADOUANI ◽  
HABIB MARZOUGUI

AbstractLetfbe a classP-homeomorphism of the circle with break point singularities, that is, differentiable except at some singular points where the derivative has a jump. Letfhave irrational rotation number andDfbe absolutely continuous on every continuity interval ofDf. We prove that if the product of thef-jumps along any subset of break points is distinct from 1 then the invariant measureμfis singular with respect to the Haar measure. This result generalizes previous results obtained by Dzhalilov and Khanin, Dzhalilov, Akhadkulov, Dzhalilov–Liousse and Mayer. Moreover, we prove that if the rotation numberρ(f) is irrational of bounded type then (a) if the product of thef-jumps on some orbit is distinct from 1 then the invariant measureμfis singular with respect to the Haar measurem, and (b) if the product of thef-jumps on each orbit is equal to 1 andD2f∈Lp(S1) for somep>1 thenμfis equivalent to the Haar measure.



2021 ◽  
pp. 1-40
Author(s):  
EDSON DE FARIA ◽  
PABLO GUARINO

Abstract Two given orbits of a minimal circle homeomorphism f are said to be geometrically equivalent if there exists a quasisymmetric circle homeomorphism identifying both orbits and commuting with f. By a well-known theorem due to Herman and Yoccoz, if f is a smooth diffeomorphism with Diophantine rotation number, then any two orbits are geometrically equivalent. It follows from the a priori bounds of Herman and Świątek, that the same holds if f is a critical circle map with rotation number of bounded type. By contrast, we prove in the present paper that if f is a critical circle map whose rotation number belongs to a certain full Lebesgue measure set in $(0,1)$ , then the number of equivalence classes is uncountable (Theorem 1.1). The proof of this result relies on the ergodicity of a two-dimensional skew product over the Gauss map. As a by-product of our techniques, we construct topological conjugacies between multicritical circle maps which are not quasisymmetric, and we show that this phenomenon is abundant, both from the topological and measure-theoretical viewpoints (Theorems 1.6 and 1.8).



2016 ◽  
Vol 38 (1) ◽  
pp. 371-383 ◽  
Author(s):  
ALEXEY TEPLINSKY

In this paper we answer positively to a question of whether it is possible for a circle diffeomorphism with breaks to be smoothly conjugate to a rigid rotation in the case where its breaks are lying on pairwise distinct trajectories. An example constructed is a piecewise linear circle homeomorphism that has four break points lying on distinct trajectories and whose invariant measure is absolutely continuous with respect to the Lebesgue measure. The irrational rotation number for our example can be chosen to be a Roth number, but not of bounded type.



1999 ◽  
Vol 19 (1) ◽  
pp. 227-257 ◽  
Author(s):  
MICHAEL YAMPOLSKY

We use the methods developed with Lyubich for proving complex bounds for real quadratics to extend de Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows.As another application of our methods we present a new proof of a theorem of Petersen on local connectivity of some Siegel Julia sets.



2017 ◽  
Vol 39 (5) ◽  
pp. 1331-1339
Author(s):  
KONSTANTIN KHANIN ◽  
SAŠA KOCIĆ

We prove that, for almost all irrational $\unicode[STIX]{x1D70C}\in (0,1)$, the Hausdorff dimension of the invariant measure of a $C^{2+\unicode[STIX]{x1D6FC}}$-smooth $(\unicode[STIX]{x1D6FC}\in (0,1))$ circle diffeomorphism with a break of size $c\in \mathbb{R}_{+}\backslash \{1\}$, with rotation number $\unicode[STIX]{x1D70C}$, is zero. This result cannot be extended to all irrational rotation numbers.



2020 ◽  
Vol 16 (4) ◽  
pp. 651-672
Author(s):  
B. Ndawa Tangue ◽  

We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$. We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1\backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.



2020 ◽  
Vol 16 (4) ◽  
pp. 444-449
Author(s):  
Habibulla Akhadkulov ◽  
Abdumajid Begmatov ◽  
Teh Yuan Ying

Let  be one-parameter family of circle homeomorphisms with a break point, that is, the derivative  has jump discontinuity at this point. Suppose  satisfies a certain Zygmund condition which is dependent on parameter . We prove that the renormalizations of circle homeomorphisms from this family with rational rotation number of sufficiently large rank are approximated by piecewise fractional linear transformations in  and -norms, depending on the values of the parameter   and , respectively.



2016 ◽  
Vol 37 (8) ◽  
pp. 2643-2670 ◽  
Author(s):  
GENADI LEVIN ◽  
GRZEGORZ ŚWIA̧TEK

We study the problem of the existence of wild attractors for critical circle coverings with Fibonacci dynamics. This is known to be related to the drift for the corresponding fixed points of renormalization. The fixed point depends only on the order of the critical point$\ell$and its drift is a number$\unicode[STIX]{x1D717}(\ell )$which is finite for each finite$\ell$. We show that the limit$\unicode[STIX]{x1D717}(\infty ):=\lim _{\ell \rightarrow \infty }\unicode[STIX]{x1D717}(\ell )$exists and is finite. The finiteness of the limit is in a sharp contrast with the case of Fibonacci unimodal maps. Furthermore,$\unicode[STIX]{x1D717}(\infty )$is expressed as a contour integral in terms of the limit of the fixed points of renormalization when$\ell \rightarrow \infty$. There is a certain paradox here, since this dynamical limit is a circle homeomorphism with the golden mean rotation number whose own drift is$\infty$for topological reasons.



Sign in / Sign up

Export Citation Format

Share Document