scholarly journals (Uniform) convergence of twisted ergodic averages

2015 ◽  
Vol 36 (7) ◽  
pp. 2172-2202 ◽  
Author(s):  
TANJA EISNER ◽  
BEN KRAUSE

Let$T$be an ergodic measure-preserving transformation on a non-atomic probability space$(X,\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$. We prove uniform extensions of the Wiener–Wintner theorem in two settings: for averages involving weights coming from Hardy field functions $p$,$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(p(n))T^{n}f(x)\bigg\}; & & \displaystyle \nonumber\end{eqnarray}$$and for ‘twisted’ polynomial ergodic averages,$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(n\unicode[STIX]{x1D703})T^{P(n)}f(x)\bigg\} & & \displaystyle \nonumber\end{eqnarray}$$for certain classes of badly approximable$\unicode[STIX]{x1D703}\in [0,1]$. We also give an elementary proof that the above twisted polynomial averages converge pointwise$\unicode[STIX]{x1D707}$-almost everywhere for$f\in L^{p}(X),p>1,$and arbitrary$\unicode[STIX]{x1D703}\in [0,1]$.

Author(s):  
M. Isabel Aguilar Cañestro ◽  
Pedro Ortega Salvador

We characterize the weighted weak-type inequalities with variable exponents for the maximal operator associated with an ergodic, invertible, measure-preserving transformation and prove the almost everywhere convergence of the ergodic averages for all functions in a variable Lebesgue space with a weight verifying a suitable condition.


1982 ◽  
Vol 34 (6) ◽  
pp. 1303-1318 ◽  
Author(s):  
John C. Kieffer ◽  
Maurice Rahe

1. Introduction. Let be a probability space with standard. Let T be a bimeasurable one-to-one map of Ω onto itself. Let U: Ω → Ω be another measurable transformation whose orbits are contained in the T-orbits; that is,where Z denotes the set of integers. (This is equivalent to saying that there is a measurable mapping L: Ω → Z such that U(ω) = TL(ω)(ω), ω ∈ Ω.) Such pairs (T, U) arise quite naturally in ergodic theory and information theory. (For example, in ergodic theory, one can see such pairs in the study of the full group of a transformation [1]; in information theory, such a pair can be associated with the input and output of a variable-length source encoder [2] [3].) Neveu [4] obtained necessary and sufficient conditions for U to be measure-preserving if T is measure-preserving. However, if U fails to be measure-preserving, U might still possess many of the features of measure-preserving transformations.


1995 ◽  
Vol 47 (4) ◽  
pp. 852-876
Author(s):  
David I. McIntosh

AbstractLet ℝ+ denote the non-negative half of the real line, and let λ denote Lebesgue measure on the Borel sets of ℝn. A function φ: ℝn → ℝ+ is called a weight function if ʃℝn φ dλ = 1. Let (X, ℱ, μ) be a non-atomic, finite measure space, let ƒ: X → ℝ+, and suppose { Tν}ν∊ℝn is an ergodic, aperiodic ℝn-flow on X. We consider the weighted ergodic averages where is a sequence of weight functions. Sufficient as well as necessary and sufficient conditions for the pointwise, almost-everywhere convergence of are developed for a particular class of weight functions φk. Specifically, let {τk: ℝn → ℝn} be a sequence of measurable, non-singular maps with measurable, non-singular inverses such that the Radon-Nikodym derivatives dλ oτk /dλ and dλ oτk-1 / dλ are L∞ (ℝn), and such that τk and τ-1 map bounded sets to bounded sets. We examine convergence for the sequence where θk is an a.e.-convergent sequence of weight functions which are dominated by a fixed L1(ℝn) function with bounded support.


2016 ◽  
Vol 38 (3) ◽  
pp. 1118-1126
Author(s):  
RADU B. MUNTEANU

In this paper we show that any ergodic measure preserving transformation of a standard probability space which is $\text{AT}(n)$ for some positive integer $n$ has zero entropy. We show that for every positive integer $n$ any Bernoulli shift is not $\text{AT}(n)$. We also give an example of a transformation which has zero entropy but does not have property $\text{AT}(n)$ for any integer $n\geq 1$.


Author(s):  
Simon P. Eveson ◽  
Roger D. Nussbaum

In important work some thirty years ago, G. Birkhoff[2, 3] and E. Hopf [16, 17] showed that large classes of positive linear operators behave like contraction mappings with respect to certain ‘almost’ metrics. Hopf worked in a space of measurable functions and took as his ‘almost’ metric the oscillation ω(y/x) of functions y and x with x(t) > 0 almost everywhere, defined by


2019 ◽  
Vol 41 (2) ◽  
pp. 606-621
Author(s):  
WENBO SUN

Let $m\in \mathbb{N}$ and $\mathbf{X}=(X,{\mathcal{X}},\unicode[STIX]{x1D707},(T_{\unicode[STIX]{x1D6FC}})_{\unicode[STIX]{x1D6FC}\in \mathbb{R}^{m}})$ be a measure-preserving system with an $\mathbb{R}^{m}$-action. We say that a Borel measure $\unicode[STIX]{x1D708}$ on $\mathbb{R}^{m}$ is weakly equidistributed for $\mathbf{X}$ if there exists $A\subseteq \mathbb{R}$ of density 1 such that, for all $f\in L^{\infty }(\unicode[STIX]{x1D707})$, we have $$\begin{eqnarray}\lim _{t\in A,t\rightarrow \infty }\int _{\mathbb{R}^{m}}f(T_{t\unicode[STIX]{x1D6FC}}x)\,d\unicode[STIX]{x1D708}(\unicode[STIX]{x1D6FC})=\int _{X}f\,d\unicode[STIX]{x1D707}\end{eqnarray}$$ for $\unicode[STIX]{x1D707}$-almost every $x\in X$. Let $W(\mathbf{X})$ denote the collection of all $\unicode[STIX]{x1D6FC}\in \mathbb{R}^{m}$ such that the $\mathbb{R}$-action $(T_{t\unicode[STIX]{x1D6FC}})_{t\in \mathbb{R}}$ is not ergodic. Under the assumption of the pointwise convergence of the double Birkhoff ergodic average, we show that a Borel measure $\unicode[STIX]{x1D708}$ on $\mathbb{R}^{m}$ is weakly equidistributed for an ergodic system $\mathbf{X}$ if and only if $\unicode[STIX]{x1D708}(W(\mathbf{X})+\unicode[STIX]{x1D6FD})=0$ for every $\unicode[STIX]{x1D6FD}\in \mathbb{R}^{m}$. Under the same assumption, we also show that $\unicode[STIX]{x1D708}$ is weakly equidistributed for all ergodic measure-preserving systems with $\mathbb{R}^{m}$-actions if and only if $\unicode[STIX]{x1D708}(\ell )=0$ for all hyperplanes $\ell$ of $\mathbb{R}^{m}$. Unlike many equidistribution results in literature whose proofs use methods from harmonic analysis, our results adopt a purely ergodic-theoretic approach.


2012 ◽  
Vol 55 (4) ◽  
pp. 830-841
Author(s):  
Karin Reinhold ◽  
Anna K. Savvopoulou ◽  
Christopher M. Wedrychowicz

AbstractLet (X, ℬ, m, τ) be a dynamical system with (X, ℬ, m) a probability space and τ an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in L1(X) of a sequence of operators of weighted averages. Almost everywhere convergence follows once we obtain an appropriate maximal estimate and once we provide a dense class where convergence holds almost everywhere. The weights are given by convolution products of members of a sequence of probability measures {vi} defined on ℤ. We then exhibit cases of such averages where convergence fails.


1990 ◽  
Vol 10 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Alexandra Bellow ◽  
Roger Jones ◽  
Joseph Rosenblatt

AbstractAssume T is an ergodic measure preserving point transformation from a probability space onto itself. Let be a sequence of pairs of positive integers, and define the sequence of averaging operators . Necessary and sufficient conditions are given forthis sequence of averages to converge almost everywhere. Weighted versions are also considered.


2021 ◽  
pp. 1-11
Author(s):  
MICHAEL CHRIST ◽  
POLONA DURCIK ◽  
VJEKOSLAV KOVAČ ◽  
JORIS ROOS

Abstract We prove almost everywhere convergence of continuous-time quadratic averages with respect to two commuting $\mathbb {R}$ -actions, coming from a single jointly measurable measure-preserving $\mathbb {R}^2$ -action on a probability space. The key ingredient of the proof comes from recent work on multilinear singular integrals; more specifically, from the study of a curved model for the triangular Hilbert transform.


2015 ◽  
Vol 36 (7) ◽  
pp. 2107-2120
Author(s):  
ZOLTÁN BUCZOLICH ◽  
GABRIELLA KESZTHELYI

Suppose that $G$ is a compact Abelian topological group, $m$ is the Haar measure on $G$ and $f:G\rightarrow \mathbb{R}$ is a measurable function. Given $(n_{k})$, a strictly monotone increasing sequence of integers, we consider the non-conventional ergodic/Birkhoff averages $$\begin{eqnarray}M_{N}^{\unicode[STIX]{x1D6FC}}f(x)=\frac{1}{N+1}\mathop{\sum }_{k=0}^{N}f(x+n_{k}\unicode[STIX]{x1D6FC}).\end{eqnarray}$$ The $f$-rotation set is $$\begin{eqnarray}\unicode[STIX]{x1D6E4}_{f}=\{\unicode[STIX]{x1D6FC}\in G:M_{N}^{\unicode[STIX]{x1D6FC}}f(x)\text{ converges for }m\text{ almost every }x\text{ as }N\rightarrow \infty \}.\end{eqnarray}$$We prove that if $G$ is a compact locally connected Abelian group and $f:G\rightarrow \mathbb{R}$ is a measurable function then from $m(\unicode[STIX]{x1D6E4}_{f})>0$ it follows that $f\in L^{1}(G)$. A similar result is established for ordinary Birkhoff averages if $G=Z_{p}$, the group of $p$-adic integers. However, if the dual group, $\widehat{G}$, contains ‘infinitely many multiple torsion’ then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences. What really matters in our results is the boundedness of the tail, $f(x+n_{k}\unicode[STIX]{x1D6FC})/k$, $k=1,\ldots ,$ for almost every $x$ for many $\unicode[STIX]{x1D6FC}$; hence, some of our theorems are stated by using instead of $\unicode[STIX]{x1D6E4}_{f}$ slightly larger sets, denoted by $\unicode[STIX]{x1D6E4}_{f,b}$.


Sign in / Sign up

Export Citation Format

Share Document