scholarly journals ON NONUNIQUENESS FOR THE ANISOTROPIC CALDERÓN PROBLEM WITH PARTIAL DATA

2020 ◽  
Vol 8 ◽  
Author(s):  
THIERRY DAUDÉ ◽  
NIKY KAMRAN ◽  
FRANÇOIS NICOLEAU

We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only Hölder continuous of order $\unicode[STIX]{x1D70C}<1$ at the end where the measurements are made. More precisely, we construct a toroidal ring $(M,g)$ and we show that there exist in the conformal class of $g$ an infinite number of Riemannian metrics $\tilde{g}=c^{4}g$ such that their corresponding partial Dirichlet-to-Neumann maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect to the metric $g$ and do not satisfy the unique continuation principle.

1995 ◽  
Vol 140 ◽  
pp. 77-99 ◽  
Author(s):  
Xingwang Xu

In this paper, we are interested in the compactness of isospectral conformal metrics in dimension 4.Let us recall the definition of the isospectral metrics. Two Riemannian metrics g, g′ on a compact manifold are said to be isospectral if their associated Laplace operators on functions have identical spectrum. There are now numeruos examples of compact Riemannian manifolds which admit more than two metrics such that they are isospectral but not isometric. That is to say that the eigenvalues of the Laplace operator Δ on the functions do not necessarily determine the isometry class of (M, g). If we further require the metrics stay in the same conformal class, the spectrum of Laplace operator still does not determine the metric uniquely ([BG], [BPY]).


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
María Ángeles García-Ferrero ◽  
Angkana Rüland ◽  
Wiktoria Zatoń

<p style='text-indent:20px;'>In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on [<xref ref-type="bibr" rid="b3">3</xref>,<xref ref-type="bibr" rid="b35">35</xref>]. The results rely on quantitative unique continuation estimates in suitable function spaces with explicit frequency dependence. We contrast the frequency dependence of interior Runge approximation results from non-convex and convex sets.</p>


2020 ◽  
pp. 1-24
Author(s):  
VICTORIA SADOVSKAYA

Abstract We consider Hölder continuous cocycles over an accessible partially hyperbolic system with values in the group of diffeomorphisms of a compact manifold $\mathcal {M}$ . We obtain several results for this setting. If a cocycle is bounded in $C^{1+\gamma }$ , we show that it has a continuous invariant family of $\gamma $ -Hölder Riemannian metrics on $\mathcal {M}$ . We establish continuity of a measurable conjugacy between two cocycles assuming bunching or existence of holonomies for both and pre-compactness in $C^0$ for one of them. We give conditions for existence of a continuous conjugacy between two cocycles in terms of their cycle weights. We also study the relation between the conjugacy and holonomies of the cocycles. Our results give arbitrarily small loss of regularity of the conjugacy along the fiber compared to that of the holonomies and of the cocycle.


Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


2007 ◽  
Vol 18 (09) ◽  
pp. 1071-1111 ◽  
Author(s):  
JÉRÔME VÉTOIS

Let (M,g) be a smooth compact Riemannian n-manifold, n ≥ 4, and h be a Holdër continuous function on M. We prove multiplicity of changing sign solutions for equations like Δg u + hu = |u|2* - 2 u, where Δg is the Laplace–Beltrami operator and 2* = 2n/(n - 2) is critical from the Sobolev viewpoint.


2021 ◽  
pp. 1-23
Author(s):  
VOLKER BRANDING ◽  
STEFANO MONTALDO ◽  
CEZAR ONICIUC ◽  
ANDREA RATTO

1995 ◽  
Vol 2 (2) ◽  
pp. 123-140
Author(s):  
R. Duduchava ◽  
D. Natroshvili ◽  
E. Shargorodsky

Abstract The three-dimensional problems of the mathematical theory of thermoelasticity are considered for homogeneous anisotropic bodies with cuts. It is assumed that the two-dimensional surface of a cut is a smooth manifold of an arbitrary configuration with a smooth boundary. The existence and uniqueness theorems for boundary value problems of statics and pseudo-oscillations are proved in the Besov and Bessel-potential spaces by means of the classical potential methods and the theory of pseudodifferential equations on manifolds with boundary. Using the embedding theorems, it is proved that the solutions of the considered problems are Hölder continuous. It is shown that the displacement vector and the temperature distribution function are Cα -regular with any exponent α < 1/2. This paper consists of two parts. In this part all the principal results are formulated. The forthcoming second part will deal with the auxiliary results and proofs.


Sign in / Sign up

Export Citation Format

Share Document