scholarly journals Laser system design for table-top X-ray light source

Author(s):  
Anne-Laure Calendron ◽  
Joachim Meier ◽  
Michael Hemmer ◽  
Luis E. Zapata ◽  
Fabian Reichert ◽  
...  

We present possible conceptual designs of a laser system for driving table-top free-electron lasers based on terahertz acceleration. After discussing the achievable performances of laser amplifiers with Yb:YAG at cryogenic and room temperature and Yb:YLF at cryogenic temperature, we present amplification modules with available results and concepts of amplifier chains based on these laser media. Their performances are discussed in light of the specifications for the tasks within the table-top light source. Technical and engineering challenges, such as cooling, control, synchronization and diagnostics, are outlined. Three concepts for the laser layout feeding the accelerator are eventually derived and presented.

2017 ◽  
Vol 4 (5) ◽  
pp. 054307 ◽  
Author(s):  
Markus Kubin ◽  
Jan Kern ◽  
Sheraz Gul ◽  
Thomas Kroll ◽  
Ruchira Chatterjee ◽  
...  

2014 ◽  
Vol 369 (1647) ◽  
pp. 20130337 ◽  
Author(s):  
Uwe Weierstall

X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques.


2015 ◽  
Vol 86 (9) ◽  
pp. 093104 ◽  
Author(s):  
T. Tanaka ◽  
M. Kato ◽  
N. Saito ◽  
K. Tono ◽  
M. Yabashi ◽  
...  

2020 ◽  
Vol 27 (5) ◽  
pp. 1095-1102
Author(s):  
Anastasya Shilova ◽  
Hugo Lebrette ◽  
Oskar Aurelius ◽  
Jie Nan ◽  
Martin Welin ◽  
...  

Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at  MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program: an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports – silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.


2014 ◽  
Vol 47 (6) ◽  
pp. 1975-1982 ◽  
Author(s):  
Sarah L. Perry ◽  
Sudipto Guha ◽  
Ashtamurthy S. Pawate ◽  
Robert Henning ◽  
Irina Kosheleva ◽  
...  

Renewed interest in room-temperature diffraction has been prompted by the desire to observe structural dynamics of proteins as they function. Serial crystallography, an experimental strategy that aggregates small pieces of data from a large uniform pool of crystals, has been demonstrated at synchrotrons and X-ray free-electron lasers. This work utilizes a microfluidic crystallization platform for serial Laue diffraction from macroscopic crystals and proposes that a collection of small slices of Laue data from many individual crystals is a realistic solution to the difficulties in dynamic studies of irreversible biochemical reactions.


Author(s):  
Uwe Bergmann ◽  
Jan Kern ◽  
Robert W. Schoenlein ◽  
Philippe Wernet ◽  
Vittal K. Yachandra ◽  
...  

2021 ◽  
pp. 100097
Author(s):  
Nanshun Huang ◽  
Haixiao Deng ◽  
Bo Liu ◽  
Dong Wang ◽  
Zhentang Zhao

2014 ◽  
Vol 8 (9) ◽  
pp. 706-709 ◽  
Author(s):  
N. Hartmann ◽  
W. Helml ◽  
A. Galler ◽  
M. R. Bionta ◽  
J. Grünert ◽  
...  

2007 ◽  
Vol 86 (3) ◽  
pp. 431-435 ◽  
Author(s):  
F. Grüner ◽  
S. Becker ◽  
U. Schramm ◽  
T. Eichner ◽  
M. Fuchs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document