scholarly journals An Algebraic Proof of Quillen's Resolution Theorem for K1

Author(s):  
Ben Whale

AbstractIn his 1973 paper [4] Quillen proved a resolution theorem for the K-Theory of an exact category; his proof was homotopic in nature. By using the main result of Nenashev's paper [3], we are able to give an algebraic proof of Quillen's Resolution Theorem for K1 of an exact category. We view this as an advance towards the goal of giving an essentially algebraic subject an algebraic foundation.

1981 ◽  
Vol 89 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Chehrzad Shakiban

AbstractAn exact sequence resolving the Euler operator of the calculus of variations for partial differential polynomials in several dependent and independent variables is described. This resolution provides a solution to the ‘Inverse problem of the calculus of variations’ for systems of polynomial partial equations.That problem consists of characterizing those systems of partial differential equations which arise as the Euler-Lagrange equations of some variational principle. It can be embedded in the more general problem of finding a resolution of the Euler operator. In (3), hereafter referred to as I, a solution of this problem was given for the case of one independent and one dependent variable. Here we generalize this resolution to several independent and dependent variables simultaneously. The methods employed are similar in spirit to the algebraic techniques associated with the Gelfand-Dikii transform in I, although are considerably complicated by the appearance of several variables. In particular, a simple algebraic proof of the local exactness of a complex considered by Takens(5), Vinogradov(6), Anderson and Duchamp(1), and others appears as part of the resolution considered here.


2000 ◽  
Vol 65 (2) ◽  
pp. 857-884 ◽  
Author(s):  
Gábor Sági

AbstractHere we investigate the classes of representable directed cylindric algebras of dimension α introduced by Németi [12]. can be seen in two different ways: first, as an algebraic counterpart of higher order logics and second, as a cylindric algebraic analogue of Quasi-Projective Relation Algebras. We will give a new, “purely cylindric algebraic” proof for the following theorems of Németi: (i) is a finitely axiomatizable variety whenever α ≥ 3 is finite and (ii) one can obtain a strong representation theorem for if one chooses an appropriate (non-well-founded) set theory as foundation of mathematics. These results provide a purely cylindric algebraic solution for the Finitization Problem (in the sense of [11]) in some non-well-founded set theories.


2017 ◽  
Vol 40 ◽  
pp. 34-77 ◽  
Author(s):  
Martijn Baartse ◽  
Klaus Meer

1984 ◽  
Vol 77 (5) ◽  
pp. 439-453 ◽  
Author(s):  
Benno Fuchssteiner
Keyword(s):  

Author(s):  
Fei Liang ◽  
Zhe Lin

Implicative semi-lattices (also known as Brouwerian semi-lattices) are a generalization of Heyting algebras, and have been already well studied both from a logical and an algebraic perspective. In this paper, we consider the variety ISt of the expansions of implicative semi-lattices with tense modal operators, which are algebraic models of the disjunction-free fragment of intuitionistic tense logic. Using methods from algebraic proof theory, we show that the logic of tense implicative semi-lattices has the finite model property. Combining with the finite axiomatizability of the logic, it follows that the logic is decidable.


1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.


Sign in / Sign up

Export Citation Format

Share Document