scholarly journals 1-Homotopy of Chevalley Groups

Author(s):  
Matthias Wendt

AbstractIn this paper, we describe the sheaves of 1-homotopy groups of a simply-connected Chevalley group G; these sheaves can be identified with the sheafification of certain unstable Karoubi-Villamayor K-groups.

1982 ◽  
Vol 34 (4) ◽  
pp. 945-951 ◽  
Author(s):  
Bomshik Chang

Following the notation and the definitions in [1], let L(K) be the Chevalley group of type L over a field K, W the Weyl group of L and h the Coxeter number, i.e., the order of Coxeter elements of W. In a letter to the author, John McKay asked the following question: If h + 1 is a prime, is there an element of order h + 1 in L(C)? In this note we give an affirmative answer to this question by constructing an element of order h + 1 (prime or otherwise) in the subgroup Lz = 〈xτ(1)|r ∈ Φ〉 of L(K), for any K.Our problem has an immediate solution when L = An. In this case h = n + 1 and the (n + l) × (n + l) matrixhas order 2(h + 1) in SLn+1(K). This seemingly trivial solution turns out to be a prototype of general solutions in the following sense.


Author(s):  
Peter Fiebig

Abstract For a field of characteristic $\ne 2$, we study vector spaces that are graded by the weight lattice of a root system and are endowed with linear operators in each simple root direction. We show that these data extend to a weight lattice graded semisimple representation of the corresponding Lie algebra, if and only if there exists a bilinear form that satisfies properties (roughly) analogous to those of the Hodge–Riemann forms in complex geometry. In the 2nd part of the article, we replace the field by the $p$-adic integers (with $p\ne 2$) and show that in this case the existence of a certain bilinear form is equivalent to the existence of a structure of a tilting module for the associated simply connected $p$-adic Chevalley group.


Author(s):  
Michael Wiemeler

Abstract Let $M$ be a simply connected spin manifold of dimension at least six, which admits a metric of positive scalar curvature. We show that the observer moduli space of positive scalar curvature metrics on $M$ has non-trivial higher homotopy groups. Moreover, denote by $\mathcal{M}_0^+(M)$ the moduli space of positive scalar curvature metrics on $M$ associated to the group of orientation-preserving diffeomorphisms of $M$. We show that if $M$ belongs to a certain class of manifolds that includes $(2n-2)$-connected $(4n-2)$-dimensional manifolds, then the fundamental group of $\mathcal{M}_0^+(M)$ is non-trivial.


1983 ◽  
Vol 35 (2) ◽  
pp. 193-217
Author(s):  
Sara Hurvitz

Let P be the set of primes, l ⊆ P a subset and l′ = P – l Recall that an H0-space is a space the rational cohomology of which is a free algebra.Cassidy and Hilton defined and investigated l′-isolated homomorphisms between locally nilpotent groups. Zabrodsky [8] showed that if X and Y are simply connected H0-spaces either with a finite number of homotopy groups or with a finite number of homology groups, then every rational equivalence f : X → Y can be decomposed into an l-equivalence and an l′-equivalence.In this paper we define and investigate l′-isolated maps between pointed spaces, which are of the homotopy type of path-connected nilpotent CW-complexes. Our definition of an l′-isolated map is analogous to the definition of an l′-isolated homomorphism. As every homomorphism can be decomposed into an l-isomorphism and an l′-isolated homomorphism, every map can be decomposed into an l-equivalence and an l′-isolated map.


1976 ◽  
Vol 28 (2) ◽  
pp. 420-428 ◽  
Author(s):  
James F. Hurley

In [6] we have constructed certain normal subgroups G7 of the elementary subgroup GR of the Chevalley group G(L, R) over R corresponding to a finite dimensional simple Lie algebra L over the complex field, where R is a commutative ring with identity. The method employed was to augment somewhat the generators of the elementary subgroup EI of G corresponding to an ideal I of the underlying Chevalley algebra LR;EI is thus the group generated by all xr(t) in G having the property that ter ⊂ I. In [6, § 5] we noted that in general EI actually had to be enlarged for a normal subgroup of GR to be obtained.


1992 ◽  
Vol 122 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
John W. Rutter

SynopsisWe give here an abelian kernel (central) group extension sequence for calculating, for a non-simply-connected space X, the group of pointed self-homotopy-equivalence classes . This group extension sequence gives in terms of , where Xn is the nth stage of a Postnikov decomposition, and, in particular, determines up to extension for non-simplyconnected spaces X having at most two non-trivial homotopy groups in dimensions 1 and n. We give a simple geometric proof that the sequence splits in the case where is the generalised Eilenberg–McLane space corresponding to the action ϕ: π1 → aut πn, and give some information about the class of the extension in the general case.


2014 ◽  
Vol 17 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Simon M. Goodwin ◽  
Peter Mosch ◽  
Gerhard Röhrle

AbstractLet$G(q)$be a finite Chevalley group, where$q$is a power of a good prime$p$, and let$U(q)$be a Sylow$p$-subgroup of$G(q)$. Then a generalized version of a conjecture of Higman asserts that the number$k(U(q))$of conjugacy classes in$U(q)$is given by a polynomial in$q$with integer coefficients. In [S. M. Goodwin and G. Röhrle,J. Algebra321 (2009) 3321–3334], the first and the third authors of the present paper developed an algorithm to calculate the values of$k(U(q))$. By implementing it into a computer program using$\mathsf{GAP}$, they were able to calculate$k(U(q))$for$G$of rank at most five, thereby proving that for these cases$k(U(q))$is given by a polynomial in$q$. In this paper we present some refinements and improvements of the algorithm that allow us to calculate the values of$k(U(q))$for finite Chevalley groups of rank six and seven, except$E_7$. We observe that$k(U(q))$is a polynomial, so that the generalized Higman conjecture holds for these groups. Moreover, if we write$k(U(q))$as a polynomial in$q-1$, then the coefficients are non-negative.Under the assumption that$k(U(q))$is a polynomial in$q-1$, we also give an explicit formula for the coefficients of$k(U(q))$of degrees zero, one and two.


2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Bertrand Toën

The objective of this work is to reconsider the schematization problem of [6], with a particular focus on the global case over Z. For this, we prove the conjecture [Conj. 2.3.6][15] which gives a formula for the homotopy groups of the schematization of a simply connected homotopy type. We deduce from this several results on the behaviour of the schematization functor, which we propose as a solution to the schematization problem. Comment: 21 pages, french


2021 ◽  
Vol 272 (1333) ◽  
Author(s):  
Gijs Heuts

We construct a Goodwillie tower of categories which interpolates between the category of pointed spaces and the category of spectra. This tower of categories refines the Goodwillie tower of the identity functor in a precise sense. More generally, we construct such a tower for a large class of ∞ \infty -categories C \mathcal {C} and classify such Goodwillie towers in terms of the derivatives of the identity functor of C \mathcal {C} . As a particular application we show how this provides a model for the homotopy theory of simply-connected spaces in terms of coalgebras in spectra with Tate diagonals. Our classification of Goodwillie towers simplifies considerably in settings where the Tate cohomology of the symmetric groups vanishes. As an example we apply our methods to rational homotopy theory. Another application identifies the homotopy theory of p p -local spaces with homotopy groups in a certain finite range with the homotopy theory of certain algebras over Ching’s spectral version of the Lie operad. This is a close analogue of Quillen’s results on rational homotopy.


Sign in / Sign up

Export Citation Format

Share Document