Unsteady force generation and vortex dynamics of pitching and plunging aerofoils

2012 ◽  
Vol 709 ◽  
pp. 37-68 ◽  
Author(s):  
Yeon Sik Baik ◽  
Luis P. Bernal ◽  
Kenneth Granlund ◽  
Michael V. Ol

AbstractExperimental studies of the flow topology, leading-edge vortex dynamics and unsteady force produced by pitching and plunging flat-plate aerofoils in forward flight at Reynolds numbers in the range 5000–20 000 are described. We consider the effects of varying frequency and plunge amplitude for the same effective angle-of-attack time history. The effective angle-of-attack history is a sinusoidal oscillation in the range $\ensuremath{-} 6$ to $2{2}^{\ensuremath{\circ} } $ with mean of ${8}^{\ensuremath{\circ} } $ and amplitude of $1{4}^{\ensuremath{\circ} } $. The reduced frequency is varied in the range 0.314–1.0 and the Strouhal number range is 0.10–0.48. Results show that for constant effective angle of attack, the flow evolution is independent of Strouhal number, and as the reduced frequency is increased the leading-edge vortex (LEV) separates later in phase during the downstroke. The LEV trajectory, circulation and area are reported. It is shown that the effective angle of attack and reduced frequency determine the flow evolution, and the Strouhal number is the main parameter determining the aerodynamic force acting on the aerofoil. At low Strouhal numbers, the lift coefficient is proportional to the effective angle of attack, indicating the validity of the quasi-steady approximation. Large values of force coefficients (${\ensuremath{\sim} }6$) are measured at high Strouhal number. The measurement results are compared with linear potential flow theory and found to be in reasonable agreement. During the downstroke, when the LEV is present, better agreement is found when the wake effect is ignored for both the lift and drag coefficients.

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 59 ◽  
Author(s):  
Alexander Gehrke ◽  
Guillaume Guyon-Crozier ◽  
Karen Mulleners

The pitching kinematics of an experimental hovering flapping wing setup are optimized by means of a genetic algorithm. The pitching kinematics of the setup are parameterized with seven degrees of freedom to allow for complex non-linear and non-harmonic pitching motions. Two optimization objectives are considered. The first objective is maximum stroke average efficiency, and the second objective is maximum stroke average lift. The solutions for both optimization scenarios converge within less than 30 generations based on the evaluation of their fitness. The pitching kinematics of the best individual of the initial and final population closely resemble each other for both optimization scenarios, but the optimal kinematics differ substantially between the two scenarios. The most efficient pitching motion is smoother and closer to a sinusoidal pitching motion, whereas the highest lift-generating pitching motion has sharper edges and is closer to a trapezoidal motion. In both solutions, the rotation or pitching motion is advanced with respect to the sinusoidal stroke motion. Velocity field measurements at selected phases during the flapping motions highlight why the obtained solutions are optimal for the two different optimization objectives. The most efficient pitching motion is characterized by a nearly constant and relatively low effective angle of attack at the start of the half stroke, which supports the formation of a leading edge vortex close to the airfoil surface, which remains bound for most of the half stroke. The highest lift-generating pitching motion has a larger effective angle of attack, which leads to the generation of a stronger leading edge vortex and higher lift coefficient than in the efficiency optimized scenario.


2015 ◽  
Vol 776 ◽  
pp. 316-333 ◽  
Author(s):  
Eric Limacher ◽  
David E. Rival

As an abstraction of natural samara flight, steadily rotating plates in a free-stream flow have been studied. Particle image velocimetry on span-normal planes has been conducted to show that increasing rotation, as captured by the dimensionless parameter of tip speed ratio, causes a transition of the mean wake topology from that of a bluff body to that of a stable leading-edge vortex. Despite its notable effect on topology, a change in tip speed ratio has negligible effect on leading-edge circulation at a given spanwise position, local effective angle of attack and local effective velocity. The effective angle-of-attack distribution was held constant at different tip speed ratios by comparing rotating plates with different twist profiles. The shear-layer velocity profile at the leading edge was also resolved, allowing quantification of the vorticity flux passing through the leading-edge shear layer. Interestingly, the observed equilibrium values of circulation are not sensitive to changes in shear-layer vorticity flux.


AIAA Journal ◽  
1993 ◽  
Vol 31 (8) ◽  
pp. 1384-1391 ◽  
Author(s):  
C. Magness ◽  
O. Robinson ◽  
D. Rockwell

1988 ◽  
Vol 25 (9) ◽  
pp. 815-819 ◽  
Author(s):  
Young-Whoon Jun ◽  
Robert C. Nelson

2009 ◽  
Vol 113 (1142) ◽  
pp. 253-262 ◽  
Author(s):  
P. C. Wilkins ◽  
K. Knowles

AbstractThe aerodynamics of insect-like flapping are dominated by the production of a large, stable, and lift-enhancing leading-edge vortex (LEV) above the wing. In this paper the phenomenology behind the LEV is explored, the reasons for its stability are investigated, and the effects on the LEV of changing Reynolds number or angle-of-attack are studied. A predominantly-computational method has been used, validated against both existing and new experimental data. It is concluded that the LEV is stable over the entire range of Reynolds numbers investigated here and that changes in angle-of-attack do not affect the LEV’s stability. The primary motivation of the current work is to ascertain whether insect-like flapping can be successfully ‘scaled up’ to produce a flapping-wing micro air vehicle (FMAV) and the results presented here suggest that this should be the case.


Author(s):  
Ali R Davari ◽  
Rezvan Abdollahi ◽  
Ehsaneddin Azimizadeh

Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost zero (x/c = 0.47), and adverse pressure gradient (x/c = 0.57) regions, on the blade section. The velocity inside the boundary layer has shown high sensitivity to the reduced frequency in the different pressure gradient regions. In some definite test cases, velocity inside boundary layer has shown beating phenomena, which is the result of the periodical appearance of the leading edge vortex. The impact of the leading edge vortex on the velocity has been observed to be more evident, in some cases, in the form of signal beating. This signature has been more evident, as the rake entered the adverse pressure gradient region. In order to quantify this observed phenomenon, the time-dependent velocity data have been transformed into the frequency domain, utilizing the discrete Fourier transformation. Even though the leading edge vortex has been continuously developed on the profile, and then has shed toward the leading edge, during each cycle on a plunging profile, the dominant frequency throughout this process has been measured to be about 4 Hz for this blade section.


Author(s):  
Chen-Yuan Bai ◽  
Juan Li ◽  
Zi-Niu Wu

The unsteady lift for incompressible starting flow of a flat plate at high angle of attack involves a repeatable three-phase variation: (a) initial lift drop, (b) a Wagner type lift increase enhanced by leading edge vortex and (c) a lift drop due to a lift-decreasing trailing edge vortex spiral induced by the leading edge vortex convected to the trailing edge. For compressible starting flow at small angle of attack, it is well known that the lift experiences an initial drop due to piston effect and then a Wagner type lift increase enhanced by compressibility. The third phase has not been reported in the past. In this paper we consider subsonic, transonic and supersonic starting flow at high angle of attack. Numerical computation using computational fluid dynamics is used to compute the flow and lift behavior is explained using existing theories. It is found that, when the angle of attack is 20 degrees, we still observe the three-phase lift variation for Mach number below 0.8. The second conclusion is that the lift during the Wagner type increase phase is a decreasing function of the Mach number, in contrast to what we know from piston and indicial function method for small angle of attack. Another important conclusion is, when the Mach number is high enough, say above 0.9, only two-phase variation is observed: (a) initial lift drop and (b) Wagner type lift increase. For supersonic starting flow the Wagner type lift increase is replaced by a linear increase.


Sign in / Sign up

Export Citation Format

Share Document