scholarly journals Heat transport by laminar boundary layer flow with polymers

2012 ◽  
Vol 696 ◽  
pp. 330-344 ◽  
Author(s):  
Roberto Benzi ◽  
Emily S. C. Ching ◽  
Vivien W. S. Chu

AbstractMotivated by recent experimental observations, we consider a steady-state boundary layer flow with polymers in forced convection above a heated plate and study how the heat transport might be affected by the polymers. We discuss how a set of equations can be derived for the problem and how these equations can be solved numerically by an iterative scheme. By carrying out such a scheme, we find that the effect of the polymers is equivalent to producing a space-dependent effective viscosity that first increases from the zero-shear value at the plate then decreases rapidly back to the zero-shear value far from the plate. We further show that such an effective viscosity leads to a decrease in the streamwise velocity near the plate, which in turn leads to a reduction in heat transport.

2016 ◽  
Vol 788 ◽  
pp. 337-357 ◽  
Author(s):  
Roberto Benzi ◽  
Emily S. C. Ching ◽  
Wilson C. K. Yu ◽  
Yiqu Wang

We study how heat transport is affected by finitely extensible polymers in a laminar boundary layer flow within the framework of the Prandtl–Blasius–Pohlhausen theory. The polymers are described by the finitely extensible nonlinear elastic-Peterlin model with a parameter $b^{2}$, which is the ratio of the maximum to the equilibrium value of the trace of the polymer conformation tensor. For very large $b^{2}$, heat transport is reduced. When $b^{2}$ is small, heat transport is enhanced. We investigate the transition from heat reduction to heat enhancement as a function of the polymer relaxation time and concentration, and show that the transition can be explained in terms of the functional shape of the space-dependent effective viscosity due to the polymers.


2018 ◽  
Vol 849 ◽  
pp. 192-230 ◽  
Author(s):  
Dominic A. van der A ◽  
Pietro Scandura ◽  
Tom O’Donoghue

Turbulence characteristics of an asymmetric oscillatory boundary layer flow are analysed through two-component laser-Doppler measurements carried out in a large oscillatory flow tunnel and direct numerical simulation (DNS). Five different Reynolds numbers, $R_{\unicode[STIX]{x1D6FF}}$, in the range 846–2057 have been investigated experimentally, where $R_{\unicode[STIX]{x1D6FF}}=\tilde{u} _{0max}\unicode[STIX]{x1D6FF}/\unicode[STIX]{x1D708}$ with $\tilde{u} _{0max}$ the maximum oscillatory velocity in the irrotational region, $\unicode[STIX]{x1D6FF}$ the Stokes length and $\unicode[STIX]{x1D708}$ the fluid kinematic viscosity. DNS has been carried out for the lowest three $R_{\unicode[STIX]{x1D6FF}}$ equal to 846, 1155 and 1475. Both experimental and numerical results show that the flow statistics increase during accelerating phases of the flow and especially at times of transition to turbulent flow. Once turbulence is fully developed, the near-wall statistics remain almost constant until the late half-cycle, with values close to those reported for steady wall-bounded flows. The higher-order statistics reach large values within a normalized wall distance of approximately $y/\unicode[STIX]{x1D6FF}=0.2$ at phases corresponding to the onset of low-speed streak breaking, because of the intermittency of the velocity fluctuations at these times. In particular, the flatness of the streamwise velocity fluctuations reaches values of the order of ten, while the flatness of the wall-normal velocity fluctuations reaches values of several hundreds. Far from the wall, at locations where the vertical gradient of the streamwise velocity is zero, the skewness is approximately zero and the flatness is approximately equal to 3, representative of a normal distribution. At lower elevations the distribution of the fluctuations deviate substantially from a normal distribution, but are found to be well described by other standard theoretical probability distributions.


1995 ◽  
Vol 300 ◽  
pp. 265-285 ◽  
Author(s):  
K. W. Cassel ◽  
A. I. Ruban ◽  
J. D. A. Walker

Separation of a supersonic boundary layer (or equivalently a hypersonic boundary layer in a region of weak global interaction) near a compression ramp is considered for moderate wall temperatures. For small ramp angles, the flow in the vicinity of the ramp is described by the classical supersonic triple-deck structure governing a local viscous-inviscid interaction. The boundary layer is known to exhibit recirculating flow near the corner once the ramp angle exceeds a certain critical value. Here it is shown that above a second and larger critical ramp angle, the boundary-layer flow develops an instability. The instability appears to be associated with the occurrence of inflection points in the streamwise velocity profiles within the recirculation region and develops as a wave packet which remains stationary near the corner and grows in amplitude with time.


2020 ◽  
Vol 13 (3) ◽  
pp. 1007-1015
Author(s):  
Azhar Ali Zafar ◽  
◽  
Khurram Shabbir ◽  
Asim Naseem ◽  
Muhammad Waqas Ashraf

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
H. P. Rani ◽  
G. Janardhan Reddy ◽  
Chang Nyung Kim ◽  
Y. Rameshwar

In the present study, the transient, free convective, boundary layer flow of a couple stress fluid flowing over a vertical cylinder is investigated, and the heat and mass functions for the final steady-state of the present flow are developed. The solution of the time dependent nonlinear and coupled governing equations is obtained with the aid of an unconditionally stable Crank–Nicolson type of numerical scheme. Numerical results for the time histories of the skin-friction coefficient, Nusselt number, and Sherwood number as well as the steady-state velocity, temperature, and concentration are presented graphically and discussed. Also, it is observed that time required for the flow variables to reach the steady-state increases with the increasing values of Schmidt and Prandtl numbers, while the opposite trend is observed with respect to the buoyancy ratio parameter. To analyze the flow variables in the steady-state, the heatlines and masslines are used in addition to streamlines, isotherms, and isoconcentration lines. When the heat and mass functions are properly made dimensionless, its dimensionless values are related to the local and overall Nusselt and Sherwood numbers. Boundary layer flow visualization indicates that the heatlines and masslines are dense in the vicinity of the hot wall, especially near the leading edge.


1979 ◽  
Vol 101 (4) ◽  
pp. 660-665 ◽  
Author(s):  
C. T. Hsu ◽  
Ping Cheng

A linear stability analysis is performed for the study of the onset of vortex instability in free convective flow over an inclined heated surface in a porous medium. The undisturbed state is assumed to be the steady two-dimensional buoyancy-induced boundary layer flow which is characterized by a non-linear temperature profile. By a scaling argument, it is shown that the length scales of disturbances are smaller than those for the undisturbed boundary layer flow, thus, confirming the so-called “bottling effects” whereby the disturbances are confined within the boundary layer. By neglecting the lowest order terms in the three-dimensional disturbances equations, the simplified equations are solved based on the local similarity approximations, wherein the disturbances are assumed to have a weak dependence in the streamwise direction. The resulting eigenvalue problem is solved numerically. The critical parameter and the critical wave number of disturbances at the onset of vortex instability are computed for different prescribed wall temperature distribution of the inclined surface. It is found that the larger the inclination angle with respect to the vertical, the more susceptible is the flow for the vortex mode of disturbances; and in the limit of zero inclination angle (i.e., a vertical heated plate) the flow is stable for this form of disturbances.


2016 ◽  
Vol 20 (5) ◽  
pp. 1499-1507 ◽  
Author(s):  
Shariatzadeh Joneydi

A conjugate (coupled) forced convection heat transfer from a heated conducting plate under turbulent boundary layer flow is considered. A heated plate of finite thickness is cooled under turbulent forced convection boundary layer flow. Because the conduction and convection boundary layer flow is coupled (conjugated) in the problem, a semi-analytical solution based on Differential Transform Method (DTM) is presented for solving the non-linear integro-differential equation occurring in the problem. The main conclusion is that in the conjugate heat transfer case the temperature distribution of the plate is flatter than the one in the non-conjugate case. This feature is more pronounced under turbulent flow when compared with the laminar flow.


Pramana ◽  
2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Preeti ◽  
Odelu Ojjela ◽  
Pravin Kashyap Kambhatla ◽  
Fateh Mebarek-Oudina

Sign in / Sign up

Export Citation Format

Share Document