Pressure gradient effects on the large-scale structure of turbulent boundary layers

2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.

Author(s):  
Yvan Maciel ◽  
Tie Wei ◽  
Ayse G. Gungor ◽  
Mark P. Simens

We perform a careful nondimensional analysis of the turbulent boundary layer equations in order to bring out, without assuming any self-similar behaviour, a consistent set of nondimensional parameters characterizing the outer region of turbulent boundary layers with arbitrary pressure gradients. These nondimensional parameters are a pressure gradient parameter, a Reynolds number (different from commonly used ones) and an inertial parameter. They are obtained without assuming a priori the outer length and velocity scales. They represent the ratio of the magnitudes of two types of forces in the outer region, using the Reynolds shear stress gradient (apparent turbulent force) as the reference force: inertia to apparent turbulent forces for the inertial parameter, pressure to apparent turbulent forces for the pressure gradient parameter and apparent turbulent to viscous forces for the Reynolds number. We determine under what conditions they retain their meaning, depending on the outer velocity scale that is considered, with the help of seven boundary layer databases. We find the impressive result that if the Zagarola-Smits velocity is used as the outer velocity scale, the streamwise evolution of the three ratios of forces in the outer region can be accurately followed with these non-dimensional parameters in all these flows — not just the order of magnitude of these ratios. This cannot be achieved with three other outer velocity scales commonly used for pressure gradient turbulent boundary layers. Consequently, the three new nondimensional parameters, when expressed with the Zagarola-Smits velocity, can be used to follow — in a global sense — the streamwise evolution of the stream-wise mean momentum balance in the outer region. This study provides a clear and consistent framework for the analysis of the outer region of adverse-pressure-gradient turbulent boundary layers.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

An experimental investigation has been conducted to identify the effects of pressure gradient and surface roughness on turbulent boundary layers. In Part II, smooth- and rough-surface turbulent boundary layers with and without adverse pressure gradient (APG) are presented at a fixed Reynolds number (based on the length of flat plate) of 900,000. Flat-plate boundary layer measurements have been conducted using a single-sensor, hot-wire probe. For smooth surfaces, compared to the zero pressure gradient (ZPG) boundary layer, the APG boundary layer has a higher mean velocity defect throughout the boundary layer and lower friction coefficient. APG decreases the streamwise normal Reynolds stress for y less than 0.4 times the boundary layer thickness and increases it slightly in the outer region. For rough surfaces, APG reduces the roughness effects of increasing the mean velocity defect and normal Reynolds stress for y less than 23 and 28 times the average roughness height, respectively. Consistently, for the same roughness, APG decreases the integrated streamwise turbulent kinetic energy. APG also decreases the roughness effect on the friction coefficient, roughness Reynolds number, and roughness shift. Compared to the ZPG boundary layers, the roughness effects on integral boundary layer parameters—boundary layer thickness and momentum thickness—are weaker under APG. Thus, contrary to the favorable pressure gradient (FPG) in part I, APG reduces the roughness effects on turbulent boundary layers.


2017 ◽  
Vol 820 ◽  
pp. 667-692 ◽  
Author(s):  
A. Bobke ◽  
R. Vinuesa ◽  
R. Örlü ◽  
P. Schlatter

Turbulent boundary layers under adverse pressure gradients are studied using well-resolved large-eddy simulations (LES) with the goal of assessing the influence of the streamwise pressure-gradient development. Near-equilibrium boundary layers were characterized through the Clauser pressure-gradient parameter $\unicode[STIX]{x1D6FD}$. In order to fulfil the near-equilibrium conditions, the free stream velocity was prescribed such that it followed a power-law distribution. The turbulence statistics pertaining to cases with a constant value of $\unicode[STIX]{x1D6FD}$ (extending up to approximately 40 boundary-layer thicknesses) were compared with cases with non-constant $\unicode[STIX]{x1D6FD}$ distributions at matched values of $\unicode[STIX]{x1D6FD}$ and friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}$. An additional case at matched Reynolds number based on displacement thickness $Re_{\unicode[STIX]{x1D6FF}^{\ast }}$ was also considered. It was noticed that non-constant $\unicode[STIX]{x1D6FD}$ cases appear to approach the conditions of equivalent constant $\unicode[STIX]{x1D6FD}$ cases after long streamwise distances (approximately 7 boundary-layer thicknesses). The relevance of the constant $\unicode[STIX]{x1D6FD}$ cases lies in the fact that they define a ‘canonical’ state of the boundary layer, uniquely characterized by $\unicode[STIX]{x1D6FD}$ and $Re$. The investigations on the flat plate were extended to the flow around a wing section overlapping in terms of $\unicode[STIX]{x1D6FD}$ and $Re$. Comparisons with the flat-plate cases at matched values of $\unicode[STIX]{x1D6FD}$ and $Re$ revealed that the different development history of the turbulent boundary layer on the wing section leads to a less pronounced wake in the mean velocity as well as a weaker second peak in the Reynolds stresses. This is due to the weaker accumulated effect of the $\unicode[STIX]{x1D6FD}$ history. Furthermore, a scaling law suggested by Kitsios et al. (Intl J. Heat Fluid Flow, vol. 61, 2016, pp. 129–136), proposing the edge velocity and the displacement thickness as scaling parameters, was tested on two constant-pressure-gradient parameter cases. The mean velocity and Reynolds-stress profiles were found to be dependent on the downstream development. The present work is the first step towards assessing history effects in adverse-pressure-gradient turbulent boundary layers and highlights the fact that the values of the Clauser pressure-gradient parameter and the Reynolds number are not sufficient to characterize the state of the boundary layer.


2016 ◽  
Vol 810 ◽  
pp. 323-361 ◽  
Author(s):  
Jae Hwa Lee

It is known that large-scale streamwise velocity-fluctuating structures ($u^{\prime }$) are frequently observed in the log region of a zero pressure gradient turbulent boundary layer, and that these motions significantly influence near-wall small-scale $u^{\prime }$-structures by modulating the amplitude (Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28; Mathis et al., J. Fluid Mech., vol. 628, 2009, pp. 311–337). In the present study, we provide evidence that the spatial organization of large-scale structures in the log region is significantly influenced by the strength of adverse pressure gradients in turbulent boundary layers based on a direct numerical simulation dataset. For a mild adverse pressure gradient boundary layer flow, groups of hairpin vortices are coherently aligned in the streamwise direction to form hairpin vortex packets, and streamwise merging events of the induced large-scale $u^{\prime }$-structures create a larger streamwise length scale of structures than that for a zero pressure gradient boundary layer flow. As the pressure gradient strength increases further, however, the formation of hairpin packets is continuously suppressed, and large-scale motions are consequently not concatenated to create a longer motion, resulting in a significant reduction of the streamwise coherence of large-scale structures in the log layer. Although energy spectrum maps for $u^{\prime }$-structures show that the large-scale energy is continuously intensified above the log layer with an increase in the pressure gradient, amplitude modulation of the near-wall small-scale motions is dominantly induced by log region large-scale structures for adverse pressure gradient flows. Conditional averaged flow fields with large-scale Q2 and Q4 events indicate that large-scale counter-rotating roll modes play an important role in organizing the flows under the pressure gradients, and the large-scale roll modes associated with Q4 events are more enhanced in the outer layer than those associated with Q2 events, reducing the streamwise coherence of the vortices in a packet.


2012 ◽  
Vol 696 ◽  
pp. 122-151 ◽  
Author(s):  
Kan Wang ◽  
Meng Wang

AbstractCompressible large-eddy simulations are carried out to study the aero-optical distortions caused by Mach 0.5 flat-plate turbulent boundary layers at Reynolds numbers of ${\mathit{Re}}_{\theta } = 875$, 1770 and 3550, based on momentum thickness. The fluctuations of refractive index are calculated from the density field, and wavefront distortions of an optical beam traversing the boundary layer are computed based on geometric optics. The effects of aperture size, small-scale turbulence, different flow regions and beam elevation angle are examined and the underlying flow physics is analysed. It is found that the level of optical distortion decreases with increasing Reynolds number within the Reynolds-number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role, followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analysed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton’s linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


AIAA Journal ◽  
2006 ◽  
Vol 44 (11) ◽  
pp. 2450-2464 ◽  
Author(s):  
Yvan Maciel ◽  
Karl-Stéphane Rossignol ◽  
Jean Lemay

Sign in / Sign up

Export Citation Format

Share Document