Flow past a rotationally oscillating cylinder

2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.

Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 617
Author(s):  
P. Mathupriya ◽  
L. Chan ◽  
H. Hasini ◽  
A. Ooi

The numerical study of the flow over a two-dimensional cylinder which is symmetrically confined in a plane channel is presented to study the characteristics of vortex shedding. The numerical model has been established using direct numerical simulation (DNS) based on the open source computational fluid dynamics (CFD) code named OpenFOAM. In the present study, the flow fields have been computed at blockage ratio, β of 0.5 and at Reynolds number, Re of 200 and 300. Two-dimensional simulations investigated on the effects of Reynolds number based on the vortex formation and shedding frequency. It was observed that the presence of two distinct shedding frequencies appear at higher Reynolds number due to the confinement effects where there is strong interactions between boundary layer, shear layer and the wake of the cylinder. The range of simulations conducted here has shown to produce results consistent with that available in the open literature. Therefore, OpenFOAM is found to be able to accurately capture the complex physics of the flow.


2020 ◽  
Vol 4 (3) ◽  
pp. 285-294
Author(s):  
Ch. Krishnappa Vikram ◽  
H. V. Ravindra ◽  
Y. T. Krishnegowda

This article presents the results for flow past a square cylinder and two square cylinders of the same and different sizes with corner modifications by varying the spacing ratio. Here, experimental work is conducted in a recirculatory channel filled with water. A set of aluminum discs made to rotate to create the flow in the test section. The motor is used to vary the speed of the water. Fine aluminum powder is used as a tracer medium. It is observed that vortex shedding frequency decreases by placing the second cylinder in the downstream of the first cylinder. For similar size cylinders, the width of the eddy in the middle of the cylinders increases with an increase in spacing ratio. With the increase of spacing ratio to 6, the flow past each cylinder behaves like a single square cylinder. If the upstream square cylinder size is smaller than the downstream square cylinder, the eddy size is reduced in between the cylinder compared to the downstream of the second cylinder. If the upstream square cylinder size is bigger than the downstream square cylinder, the eddy size is larger in between the cylinder compared to the downstream of the second cylinder.


Author(s):  
C. Liang ◽  
X. Luo ◽  
G. Papadakis

The effect of tube spacing on the vortex shedding characteristics and fluctuating forces in an inline tube array is examined. The array consists of 6 cylinders in tandem, the examined Reynolds number is 100 and the flow is laminar. The numerical methodology and the code employed to solve the equations in an unstructured grid are validated against available results from the literature for the flow past two cylinders in tandem. Computations are then performed for the 6 row inline bank for 8 pitch-to-diameter ratios s ranging from 2.1 to 4. The instantaneous flow patterns are visualised for different spacings and the lift and drag coefficients for all cylinders are recorded and analysed. At the smallest spacing examined (s = 2.1) there are five stagnant and symmetric recirculation zones and weak vortex shedding activity occurs behind the last cylinder only. As s increases, the symmetry of the recirculation zones breaks leading to vortex shedding. This process progressively moves upstream, so that for s = 4 there is clear shedding for every row. The shedding frequency behind each cylinder is the same and increases with tube spacing. A spacing region between 3d and 3.6d is identified, within which rms drag and lift coefficients attain maximum values. This behaviour is explained with the aid of instantaneous flow patterns.


Author(s):  
Aimie Faucett ◽  
Todd Harman ◽  
Tim Ameel

Flow around a rigid, truncated, wall-mounted cylinder with an aspect ratio of 5 is examined computationally at various Reynolds numbers Re to determine how the end effects impact the vortex shedding frequency. The existence of the wall and free end cause a dampening of the classical shedding frequency found for a semi-infinite, two-dimensional cylinder, as horseshoe vortices along the wall and flow over the tip entrain into the shedding region. This effect was observed for Reynolds numbers in the range of 50 to 2000, and quantified by comparing the modified Strouhal numbers to the classical (two-dimensional) solution for Strouhal number as a function of Reynolds number. The range of transition was found to be 220 < Re < 300, versus 150 < Re < 300 for the classical case. Vortex shedding started at Re ≈ 100, significantly above Re = 50, where shedding starts for the two-dimensional case.


1990 ◽  
Vol 112 (4) ◽  
pp. 386-392 ◽  
Author(s):  
H. Sakamoto ◽  
H. Haniu

Vortex shedding from spheres at Reynolds numbers from 3 × 102 to 4 × 104 in a uniform flow was investigated experimentally. Standard hot-wire technique were used to measure the vortex shedding frequency from spheres in a low-speed wind tunnel. Flow-visualization experiments were carried out in a water channel. Important results from the investigation were that (i) the variation of the Strouhal number St (=fD/U0, U0: freestream velocity, D: diameter of the sphere, f: vortex shedding frequency) with the Reynolds number (= U0D/v, v: kinematic viscosity) can be classified into four regions, (ii) the Reynolds number at which the hairpinshaped vortices begin to change from laminar to turbulent vortices so that the wake structure behind the sphere is not shown clearly when a Reynolds number of about 800 is reached, and (vi) at Reynolds numbers ranging from 8X102 to 1.5X104, the higher and lower frequency modes of the Strouhal number coexist.


Author(s):  
La´szlo´ Baranyi

This study investigates the effect of altering oscillation amplitude on time-mean and root-mean-square values of force coefficients when plotted against amplitude of oscillation. The cylinder is placed in a uniform flow and is oscillated mechanically in transverse or in-line direction. The two-dimensional numerical computations are carried out at Re = 140 and 160, at 90% of the natural vortex shedding frequency. For in-line oscillation, jumps were found in the time-mean values of lift and torque. Both abrupt and gradual alteration of amplitude in the course of a computation had the effect of keeping the solution in one state curve, i.e., of conserving state, or inhibiting changes in vortex structure. Transverse oscillation displayed no jumps, and alteration of amplitude had no effect on the solution.


2007 ◽  
Vol 129 (8) ◽  
pp. 966-973 ◽  
Author(s):  
Philippe Ausoni ◽  
Mohamed Farhat ◽  
Xavier Escaler ◽  
Eduard Egusquiza ◽  
François Avellan

The present study deals with the shedding process of the von Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds number Reh=25×103–65×103. This research focuses mainly on the effects of cavitation and fluid-structure interaction on the mechanism of the vortex generation. The vortex shedding frequency, derived from the flow-induced vibration measurement, is found to follow the Strouhal law provided that no hydrofoil resonance frequencies are excited, i.e., lock-off. For such a regime, the von Kármán vortices exhibit strong spanwise 3D instabilities and the cavitation inception index is linearly dependent on the square root of the Reynolds number. In the case of resonance, the vortex shedding frequency is locked onto the hydrofoil eigenfrequency and the spatial coherence is enhanced with a quasi-2D shape. The measurements of the hydrofoil wall velocity amplitude and phase reveal the first torsion eigenmotion. In this case, the cavitation inception index is found to be significantly increased compared to lock-off conditions. It makes clear that the vortex roll-up is amplified by the phase locked vibrations of the trailing edge. For the cavitation inception index, a new correlation relationship that encompasses the entire range of Reynolds numbers, including both the lock-off and the lock-in cases, is proposed and validated. In contrast to the earlier models, the new correlation takes into account the trailing edge displacement velocity. In addition, it is found that the transverse velocity of the trailing edge increases the vortex strength linearly. This effect is important in the context of the fluid-structure interaction, since it implies that the velocity of the hydrofoil trailing edge increases the fluctuating forces on the body. It is also demonstrated that cavitation developing in the vortex street cannot be considered as a passive agent for the turbulent wake flow. In fact, for fully developed cavitation, the vortex shedding frequency increases up to 15%, which is accompanied by the increase of the vortex advection velocity and reduction of the streamwise vortex spacing. In addition, a significant increase of the vortex-induced vibration level is found at cavitation onset. These effects are addressed and thought to be a result of the increase of the vorticity by cavitation.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


Sign in / Sign up

Export Citation Format

Share Document