scalar fluxes
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 1)

Author(s):  
Nyla T. Husain ◽  
Tetsu Hara ◽  
Peter P. Sullivan

AbstractAir-sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example under tropical cyclones, but few studies have examined its impacts on air-sea fluxes. In this study, we employ a large eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.


2021 ◽  
Author(s):  
Ivan Mammarella ◽  
Olli Peltola ◽  
Toprak Aslan ◽  
Andreas Ibrom ◽  
Eiko Nemitz ◽  
...  

<p>Eddy covariance (EC) scalar flux loss at high frequency is due to the incapability of the measurement system to detect small-scale variation of atmospheric turbulent signals. This systematic bias is particularly important for closed-path systems, and it is mainly related to inadequate sensor frequency response, sensor separation and the air sampling trough tubes and filters. Here, we investigate the limitations of current approaches, based on measured power spectra (PSA) or cospectra (CSA), to empirically estimated the spectral transfer function of the EC system needed for the frequency response correction of measured fluxes. We performed a systematic analysis by using EC data from a wetland and forest site for a wide range of attenuation levels and signal-to-noise ratio. We proposed a novel approach for PSA that uses simultaneously the noise and the turbulent signals present in the power spectrum, providing robust estimates of spectral transfer function for all conditions. We further theoretically derived a new transfer function to be used in the CSA approach which specifically accounts for the interaction between the low-pass filtering induced phase shift and the high frequency attenuation. We show that current CSA approaches neglect such effect, giving a non-negligible systematic bias to the estimated scalar fluxes from the studied sites. Based on these findings, we recommend that spectral correction methods, implemented in EC data processing algorithms, are revised accordingly.</p>


2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Rafael Barbosa Libotte ◽  
Hermes Alves Filho ◽  
Ricardo Carvalho De Barros

In this paper, we propose a new deterministic numerical methodology to solve the one-dimensional linearized Boltzmann equation applied to neutron shielding problems (fixed-source), using the transport equation in the discrete ordinates formulation (SN) considering the multigroup theory. This is a hybrid methodology, entitled Modified Spectral Deterministic Method (SDM-M), that derives from the Spectral Deterministic Method (SDM) and Diamond Difference (DD) methods. This modification in the SDM method aims to calculate neutron scalar fluxes with lower computational cost. Two model-problems are solved using the SDM-M, and the results are compared to the coarse-mesh methods SDM, Spectral Green's Function (SGF) and Response Matrix (RM), and the fine-mesh method DD. The numerical results were obtained in the programming language JAVA version 1.8.0_91.


2021 ◽  
Vol 247 ◽  
pp. 03006
Author(s):  
Jin Li ◽  
Yunlin Xu ◽  
Dean Wang ◽  
Qicang Shen ◽  
Brendan Kochunas ◽  
...  

Coarse Mesh Finite Difference (CMFD) method is a very effective method to accelerate the iterations for neutron transport calculation. But it can degrade and even fail when the optical thickness of the mesh becomes large. Therefore several methods, including partial current-based CMFD (pCMFD) and optimally diffusive CMFD (odCMFD), have been proposed to stabilize the conventional CMFD method. Recently, a category of “higherorder” prolongation CMFD (hpCMFD) methods was proposed to use both the local and neighboring coarse mesh fluxes to update the fine cell flux, which can solve the fine cell scalar flux discontinuity problem between the fine cells at the bounary of the coarse mesh. One of the hpCMFD methods, refered as lpCMFD, was proposed to use a linear prolongation to update the fine cell scalar fluxes. Method of Characteristics (MOC) is a very popular method to solve neutron transport equations. In this paper, lpCMFD is applied on the MOC code MPACT for a variety of fine meshes. A track-based centroids calculation method is introduced to find the centroids coordinates for random shapes of fine cells. And the numerical results of a 2D C5G7 problem are provided to demonstrate the stability and efficiency of lpCMFD method on MOC. It shows that lpCMFD can stabilize the CMFD iterations in MOC method effectively and lpCMFD method performs better than odCMFD on reducing the outer MOC iterations.


Author(s):  
Leonie Esters ◽  
Anna Rutgersson ◽  
Erik Nilsson ◽  
Erik Sahlée

Abstract Inland freshwater bodies form the largest natural source of carbon to the atmosphere. To study this contribution to the atmospheric carbon cycle, eddy-covariance flux measurements at lake sites have become increasingly popular. The eddy-covariance method is derived for solely local processes from the surface (lake). Non-local processes, such as entrainment or advection, would add erroneous contributions to the eddy-covariance flux estimations. Here, we use four years of eddy-covariance measurements of carbon dioxide from Lake Erken, a freshwater lake in mid-Sweden. When the lake is covered with ice, unexpected lake fluxes were still observed. A statistical approach using only surface-layer data reveals that non-local processes produce these erroneous fluxes. The occurrence and strength of non-local processes depend on a combination of wind speed and distance between the instrumented tower and upwind shore (fetch), which we here define as the time over water. The greater the wind speed and the shorter the fetch, the higher the contribution of non-local processes to the eddy-covariance fluxes. A correction approach for the measured scalar fluxes due to the non-local processes is proposed and also applied to open-water time periods. The gas transfer velocity determined from the corrected fluxes is close to commonly used wind-speed based parametrizations.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1498 ◽  
Author(s):  
Taraprasad Bhowmick ◽  
Yong Wang ◽  
Michele Iovieno ◽  
Gholamhossein Bagheri ◽  
Eberhard Bodenschatz

The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian trend, indicating a variation in its sample number density inversely proportional to the squared of its magnitude. We observe this universal form of population distribution both in the symmetric wake regime and in the more complex three dimensional wake structure of the steady oblique regime with Reynolds number larger than 225. The population density distribution identifies the increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number, whereas the dimensionless scalar population density shows negligible variation with the Reynolds number. Descriptive statistics in the form of population density distribution of the spatial distribution of the fluid velocity and the transported scalar quantities is important for understanding the transport and local reaction processes in specific regions of the wake, which can be used e.g., for understanding the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets interact physically or chemically with the environment.


2020 ◽  
Vol 42 ◽  
pp. e12
Author(s):  
Francisco Otávio Miranda ◽  
Leonardo Deane de Abreu Sá ◽  
Celso Von Radow ◽  
Fernando M. Ramos ◽  
Antônio O. Manzi

Some physical aspects related to the occurrence of nocturnal instability-inducing intense peaks in wind speed (here abbreviated by PV.) in the tropical atmosphere above forest were investigated. Such phenomena cause strong variations in turbulent signals, occurrence of strong turbulence regimes, and significant increases in scalar fluxes. Was found that these events that occur during strong turbulence regimes can be preceded and succeeded by low frequency oscillations in environmental variables and that the significant increase in scalar fluxes observed is associated with the existence of a relative maximum wind speed value (). Procedures are applied to the data used here to enable the construction of phase space diagrams in order to better analyze the increase in amplitude of low frequency oscillations observed before PV outbreak, as well as the decrease in amplitude after PV. The aforementioned phase diagrams are used to obtain repulsor and attractor limit cycles, which respectively precede and succeed the peaks in wind speed. Weather radar images are also used to further investigate the studied atmospheric phenomenon.


2020 ◽  
Vol 42 ◽  
pp. e13
Author(s):  
Fernando Augusto Silveira Armani ◽  
Nelson Luís Dias ◽  
Dornelles Vissotto Junior

This paper presents an evaluation of scalar similarity and scalar flux similarity of measurements above the water surface of the Itaipu hydroelectric reservoir. The scalars studied were: CO2 mixing ratio (rc), air temperature (θ), specific air humidity (q) and the vertical wind velocity (w). With the variance method it was found that the vertical wind velocity is in agreement with Monin-Obukhov Similarity Theory. On the other hand, the other scalars presented larger deviations in relation to the theoretical prediction. The worst results were for air temperature and mixing ratio of CO2. The most similar scalars were θ and q, with the most frequent correlation coefficient varying in the range [0.55:0.64] for measurements in unstable atmospheric conditions and in the [−0.85:−0.75] range for measurements under stable atmospheric conditions. Regarding the scalar fluxes, they presented greater similarity to each other than the scalars themselves.


Sign in / Sign up

Export Citation Format

Share Document