Rain-induced attenuation of deep-water waves

2013 ◽  
Vol 724 ◽  
pp. 5-35 ◽  
Author(s):  
William L. Peirson ◽  
José F. Beyá ◽  
Michael L. Banner ◽  
Joaquín Sebastián Peral ◽  
Seyed Ali Azarmsa

AbstractA laboratory investigation has been undertaken to quantify water wave attenuation rates as a function of rainfall rate. Vertical artificial rainfall is shown to generate weak near-surface velocity fluctuations that decline systematically away from the free surface and are independent of rainfall rate across the range of rainfall rates investigated (40–$170~\mathrm{mm} ~{\mathrm{h} }^{- 1} $). In the absence of rain, the observed attenuation of gravity waves is at levels consistent with classical viscous theory, but with a systematic finite-amplitude effect observed above a mean steepness of 0.10. Wave attenuation rates were found to be independent of the mean wave steepness and identical when artificial rainfall rates of 108 and$141~\mathrm{mm} ~{\mathrm{h} }^{- 1} $were applied. Reassessment of complementary theoretical and experimental studies of individual droplets impacting on undisturbed water surfaces indicates that above a weak threshold rainfall rate of$30~\mathrm{mm} ~{\mathrm{h} }^{- 1} $, the surface irradiation becomes so frequent that droplet-generated violent surface motions directly interact with the incoming droplets. Present evidence is that a matching of time scales develops between the incoming surface irradiation and surface water motions generated by antecedent droplets as the rainfall rate increases. Consequently, at high rainfall rates, a highly dissipative surface regime is created that transmits little of the incident rainfall kinetic energy to the aqueous layers below. Rainfall-induced wave attenuation rates are compared with measurements of other wave attenuation processes to obtain a hierarchy of strength in both the laboratory and the field. Comparison is also made with wave attenuation theories that incorporate momentum and energy flux considerations. Rain-induced wave attenuation rates are weak or very strong depending on whether they are expressed in terms of energy scaling obtained from above or below the surface respectively, due to the high dissipation rate that occurs in the vicinity of the interface.

2021 ◽  
Vol 13 (14) ◽  
pp. 2684
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

Previous studies examining the relationship between the groundwater table and seismic velocities have been guided by empirical relationships only. Here, we develop a physics-based model relating fluctuations in groundwater table and pore pressure with seismic velocity variations through changes in effective stress. This model justifies the use of seismic velocity variations for monitoring of the pore pressure. Using a subset of the Groningen seismic network, near-surface velocity changes are estimated over a four-year period, using passive image interferometry. The same velocity changes are predicted by applying the newly derived theory to pressure-head recordings. It is demonstrated that the theory provides a close match of the observed seismic velocity changes.


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


Author(s):  
Yuefeng Yan ◽  
Chengyu Sun ◽  
Tengfei Lin ◽  
Jiao Wang ◽  
Jidong Yang ◽  
...  

Abstract In exploration and earthquake seismology, most sources used in subsurface structure imaging and rock property estimation are fixed in certain positions. Continuously moving seismic sources, such as vehicles and the metro, are one kind of important passive sources in ambient noise research. Commonly, seismic data acquisition and processing for moving sources are based on the assumption of simple point passive sources, and the dispersion curve inversion is applied to constrain near-surface velocity. This workflow neglects the Doppler effects. Considering the continuously moving properties of the sources, we first derive the analytical solution for the Rayleigh waves excited by heavy vehicles and then analyze their Doppler effects and dispersion curves. We observe that the moving source data have the Doppler effect when compared with the changes in the frequency of the source intensity, but this effect does not affect the frequency dispersion of Rayleigh waves. The dispersion curves computed for moving source records are consistent with the analytical dispersion solutions, which provide a theoretical foundation for velocity estimation using moving source data.


1970 ◽  
Vol 6 (1) ◽  
pp. 68-94 ◽  
Author(s):  
Robert K.-C Chan ◽  
Robert L Street

1986 ◽  
Vol 1 (20) ◽  
pp. 33 ◽  
Author(s):  
Hirofumi Koyama ◽  
Koichiro Iwata

This paper Is intended to propose a simple, yet highly reliable approximate method which uses a modified transfer function in order to evaluate the water particle velocity of finite amplitude waves at shallow water depth in regular and irregular wave environments. Using Dean's stream function theory, the linear function is modified so as to include the nonlinear effect of finite amplitude wave. The approximate method proposed here employs the modified transfer function. Laboratory experiments have been carried out to examine the validity of the proposed method. The approximate method is shown to estimate well the experimental values, as accurately as Dean's stream function method, although its calculation procedure is much simpler than that of Dean's method.


Geophysics ◽  
1961 ◽  
Vol 26 (6) ◽  
pp. 754-760 ◽  
Author(s):  
Pierre L. Goupillaud

This paper suggests a scheme for compensating the effects that the near‐surface stratification, variable from spread to spread, produces on both the character and the timing of the seismic traces. For this purpose, accurate near‐surface velocity information is mandatory. This scheme should greatly reduce the correlation difficulties so frequently encountered in many areas. It may also be used to enhance the resolving power of the seismic reflection technique. The approach presented here is based on the rather restrictive assumptions of normal incidence, parallel equispaced plant reflectors, and noiseless conditions.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U1-U8 ◽  
Author(s):  
Benoit de Cacqueray ◽  
Philippe Roux ◽  
Michel Campillo ◽  
Stefan Catheline

We tested a small-scale experiment that is dedicated to the study of the wave separation algorithm and to the velocity variations monitoring problem itself. It handles the case in which velocity variations at depth are hidden by near-surface velocity fluctuations. Using an acquisition system that combines an array of sources and an array of receivers, coupled with controlled velocity variations, we tested the ability of beam-forming techniques to track velocity variations separately for body waves and surface waves. After wave separation through double beam forming, the arrival time variations of the different waves were measured through the phase difference between the extracted wavelets. Finally, a method was tested to estimate near-surface velocity variations using surface waves or shallow reflection and compute a correction to isolate target velocity variations at depth.


Sign in / Sign up

Export Citation Format

Share Document