Flow structure on a simultaneously pitching and rotating wing

2014 ◽  
Vol 756 ◽  
pp. 354-383 ◽  
Author(s):  
M. Bross ◽  
D. Rockwell

AbstractA technique of particle image velocimetry is employed to characterize the three-dimensional flow structure on a wing subjected to simultaneous pitch-up and rotational motions. Distinctive vortical structures arise, relative to the well-known patterns on a wing undergoing either pure pitch-up or pure rotation. The features associated with these simultaneous motions include: stabilization of the large-scale vortex generated at the leading edge, which, for pure pitch-up motion, rapidly departs from the leading-edge region; preservation of the coherent vortex system involving both the tip vortex and the leading-edge vortex (LEV), which is severely degraded for pure rotational motion; and rapid relaxation of the flow structure upon termination of the pitch-up component, whereby the relaxed flow converges to a similar state irrespective of the pitch rate. Three-dimensional surfaces of iso-$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{Q}$and helicity are employed in conjunction with sectional representations of spanwise vorticity, velocity and vorticity flux to interpret the flow physics.

2012 ◽  
Vol 707 ◽  
pp. 541-550 ◽  
Author(s):  
Cem A. Ozen ◽  
D. Rockwell

AbstractThe three-dimensional structure of the leading-edge vortex on a rotating wing is addressed using a technique of particle image velocimetry. Organized patterns of chordwise-oriented vorticity, which exist within the vortex, arise from the spanwise flow along the surface of the wing, which can attain a velocity the same order as the velocity of the wing at its radius of gyration. These patterns are related to the strength (circulation) and coherence of the tip and root vortices. The associated distributions of spanwise-oriented vorticity along the leading-edge vortex are characterized in relation to the vorticity flux and downwash along the wing.


2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


2014 ◽  
Vol 11 (91) ◽  
pp. 20130984 ◽  
Author(s):  
Bo Cheng ◽  
Jesse Roll ◽  
Yun Liu ◽  
Daniel R. Troolin ◽  
Xinyan Deng

Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.


2019 ◽  
Vol 880 ◽  
pp. 1020-1035 ◽  
Author(s):  
Juhi Chowdhury ◽  
Matthew J. Ringuette

An analytical model is developed for the lift force produced by unsteady rotating wings; this configuration is a simple representation of a flapping wing. Modelling this is important for the aerodynamic and control-system design for bio-inspired drones. Such efforts have often been limited to being two-dimensional, semi-empirical, sometimes computationally expensive, or quasi-steady. The current model is unsteady and three-dimensional, yet simple to implement, requiring knowledge of only the wing kinematics and geometry. Rotating wings produce a vortex loop consisting of the root vortex, leading-edge vortex, tip vortex and trailing-edge vortex, which grows with time. This is modelled as a tilted planar loop, geometrically specified by the wing size, orientation and motion. By equating the angular impulse of the vortex loop to that of the fluid volume driven by the wing, the circulatory lift force is derived. Potential flow theory gives the fluid-inertial lift. Adding these two contributions yields the total lift formula. The model shows good agreement with a range of experimental and computational cases. Also, a steady-state lift model is developed that compares well with previous work for various angles of attack.


2014 ◽  
Vol 755 ◽  
pp. 83-110 ◽  
Author(s):  
M. Wolfinger ◽  
D. Rockwell

AbstractThe flow structure on a rotating wing (flat plate) is characterized over a range of Rossby number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ro} = r_g/C$, in which $r_g$ and $C$ are the radius of gyration and chord of the wing, as well as travel distance $\mathit{Ro} = r_g \Phi /C$, where $\Phi $ is the angle of rotation. Stereoscopic particle image velocimetry (SPIV) is employed to determine the flow patterns on defined planes, and by means of reconstruction, throughout entire volumes. Images of the $Q$-criterion and spanwise vorticity, velocity and vorticity flux are employed to represent the flow structure. At low Rossby number, the leading-edge, tip and root vortices are highly coherent with large dimensionless values of $Q$ in the interior regions of all vortices and large downwash between these components of the vortex system. For increasing Rossby number, however, the vortex system rapidly degrades, accompanied by loss of large $Q$ within its interior and downstream displacement of the region of large downwash. These trends are accompanied by increased deflection of the leading-edge vorticity layer away from the surface of the wing, and decreased spanwise velocity and vorticity flux in the trailing region of the wing, which are associated with the degree of deflection of the tip vortex across the wake region. Combinations of large Rossby number $\mathit{Ro} =r_g/C$ and travel distance $r_g \Phi /C$ lead to separated flow patterns similar to those observed on rectilinear translating wings at high angle of attack $\alpha $. In the extreme case where the wing travels a distance corresponding to a number of revolutions, the highly coherent flow structure is generally preserved if the Rossby number is small; it degrades substantially, however, at larger Rossby number.


Author(s):  
Miguel R. Visbal ◽  
Daniel J. Garmann

Computations have been carried out in order to describe the complex unsteady flow structure over a stationary and plunging aspect-ratio-two wing under low Reynolds number conditions (Rec = 104). The flow fields are computed employing a high-fidelity implicit large-eddy simulation (ILES) approach found to be effective for moderate Reynolds number flows exhibiting mixed laminar, transitional and turbulent regions. The evolution of the flow structure and aerodynamic loading as a function of increasing angle of attack is presented. Lift and pressure fluctuations are found to be primarily dominated by the large scale circulatory pattern established above the wing due to separation from the leading edge, and by the inherent three dimensionality of the flow induced by the finite aspect ratio. The spanwise distribution of the sectional lift coefficient revealed only a minor direct contribution to the loading exherted by the tip vortex. High-frequency, small-amplitude oscillations are shown to have a significant effect on the separation process and accompanying loads suggesting potential flow control through either suitable actuation or aero-elastic tailoring.


1997 ◽  
Vol 352 (1351) ◽  
pp. 329-340 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Recent flow visualisation experiments with the hawkmoth, Manduca sexta , revealed small but clear leading–edge vortex and a pronounced three–dimensional flow. Details of this flow pattern were studied with a scaled–up, robotic insect (‘the flapper’) that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading–edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 % of the wing length, its diameter increased approximately from 10 to 50 % of the wing chord. The leading–edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 % of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading–edge vortex were fully used for lift generation, it could support up to two–thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.


1997 ◽  
Vol 352 (1351) ◽  
pp. 317-328 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Visualization experiments with Manduca sexta have revealed the presence of a leading–edge vortex and a highly three–dimensional flow pattern. To further investigate this important discovery, a scaled–up robotic insect was built (the ‘flapper’) which could mimic the complex movements of the wings of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing revealed a small but strong leading–edge vortex on the downstroke. This vortex had a high axial flow velocity and was stable, separating from the wing at approximately 75 % of the wing length. It connected to a large, tangled tip vortex, extending back to a combining stopping and starting vortex from pronation. At the end of the downstroke, the wake could be approximated as one vortex ring per wing. Based on the size and velocity of the vortex rings, the mean lift force during the downstroke was estimated to be about 1.5 times the body weight of a hawkmoth, confirming that the downstroke is the main provider of lift force.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
Lei Dong ◽  
Kwing-So Choi ◽  
Xuerui Mao

Abstract Three-dimensional vortical structures and their interaction over a low-aspect-ratio thin wing have been studied via particle image velocimetry at the chord Reynolds number of $$10^5$$ 10 5 . The maximum lift of this thin wing is found at an angle of attack of $$42^\circ$$ 42 ∘ . The flow separates at the leading-edge and reattaches to the wing surface, forming a strong leading-edge vortex which plays an important role on the total lift. The results show that the induced velocity of the tip vortex increases with the angle of attack, which helps reattach the separated flow and maintains the leading-edge vortex. Turbulent mixing indicated by the high Reynolds stress can be observed near the leading-edge due to an intense interaction between the leading-edge vortex and the tip vortex; however, the reattachment point of the leading-edge vortex moves upstream closer to the wing tip. Graphic abstract


2006 ◽  
Author(s):  
Peng Sun ◽  
Guotal Feng

A time-accurate three-dimensional Navier-Stokes solver of the unsteady flow field in a transonic fan was carried out using "Fluent-parallel" in a parallel supercomputer. The numerical simulation focused on a transonic fan with inlet square wave total pressure distortion and the analysis of result consisted of three aspects. The first was about inlet parameters redistribution and outlet total temperature distortion induced by inlet total pressure distortion. The pattern and causation of flow loss caused by pressure distortion in rotor were analyzed secondly. It was found that the influence of distortion was different at different radial positions. In hub area, transportation-loss and mixing-loss were the main loss patterns. Distortion not only complicated them but enhanced them. Especially in stator, inlet total pressure distortion induced large-scale vortex, which produced backflow and increased the loss. While in casing area, distortion changed the format of shock wave and increased the shock loss. Finally, the format of shock wave and the hysteresis of rotor to distortion were analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document