inlet distortion
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 57)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mithilesh Rajendrakumar ◽  
Manu Vyas ◽  
Prashant Deshpande ◽  
Bommaian Balasubramanian ◽  
Kevin Shepherd

Abstract When a gas-turbine engine is in operation, inlet-generated total-pressure distortion can have a detrimental effect on engine’s stability and performance. During the product development life cycle, on-ground wind tunnel tests and in-flight tests are performed to estimate the inlet distortion characteristics. Extensive measures are taken in the preparation and execution of inlet distortion tests. The data pertaining to spatial inlet distortion is recorded using an array of high-response total-pressure probes. The pressure probes are usually arranged in rake and ring arrays as per AIR1419. The data from these probes is used by propulsion system designers to address the effects of inlet distortion on stability and performance, particularly the engine’s sensitivity to inlet distortion. In some instances, the probes can produce inaccurate measurements or no measurements at all, due to a variety of reasons. This may result in a time consuming and costly process of repeating the test. To avoid this, the inaccurate or invalid measurements can be substituted using a variety of statistical techniques during test data post-processing. This paper discusses the results of different interpolation techniques to substitute invalid steady-state total-pressure measurements, evaluated in the context of classical distortion profile data available in AIR1419. The techniques include 1D linear interpolation using only probes data from adjacent rings, 1D linear interpolation using only probes data from adjacent rakes, and bilinear interpolation using probes data from adjacent rings and rakes. Furthermore, the paper evaluates a bilinear interpolation technique with optimal weights obtained from linear regression, that enhances the estimation of invalid pressure values.


2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Alejandro Castillo Pardo ◽  
James V. Taylor

AbstractThis paper presents a novel methodology for the design of a gauze that produces distributions of stagnation pressure, swirl angle, pitch angle and turbulence intensity, tailored in both the radial and circumferential directions. A distortion gauze is made from a large number of small-scale circumferential and radial blades with tailored thickness and camber distributions. By controlling the blade design independently in both the radial and circumferential directions, the target inflow pattern can be achieved. 1D correlations are used to initialise the blades and they are refined using full 3D CFD simulations. The final design is additively manufactured for use in rotating rigs. In this paper, the method has been used to reproduce four target inflow patterns with large variations in stagnation pressure and flow angularity. Two examples model the inlet flow distortion seen at the aerodynamic interface plane of an aft-mounted boundary layer ingesting fan. The final two examples model the inlet distortion at inlet to an axial compressor spool caused by upstream structural struts in a swan neck duct. The gauzes are shown to replicate the structures of the target flow in an experimental test. These kind of flow structures would be extremely difficult or impossible to replicate in an experiment in any other way. Graphical abstract


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5746
Author(s):  
Jonas Voigt ◽  
Jens Friedrichs

The present methodological study aims to assess boundary layer ingestion (BLI) as a promising method to improve propulsion efficiency. BLI utilizes the low momentum inflow of the wing or fuselage boundary layer for thrust generation in order to minimize the required propulsive power for a given amount of thrust for wing or fuselage-embedded engines. A multi-segment parallel compressor model (PCM) is developed to calculate the power saving from full annular BLI as occurring at a fuselage tail center-mounted aircraft engine, employing radially subdivided fan characteristics. Applying this methodology, adverse effects on the fan performance due to varying inlet distortions depending on flight operating point as well as upstream boundary layer suction can be taken into account. This marks one step onto a further segmented PCM model for general cases of BLI-induced inlet distortion and allows the evaluation of synergies between combined BLI and active laminar flow control as a drag reduction measure. This study, therefore, presents one further step towards lower fuel consumption and, hence, a lower environmental impact of future transport aircraft.


Author(s):  
Baofeng Tu ◽  
Xinyu Zhang ◽  
Liang Li ◽  
Jun Hu

The compressor is a critical component that determines the aerodynamic stability of an aero-engine. Total pressure inlet distortion decreases the thrust and shrinks the stability margin, thus inducing severe performance degradation or even flameout. Generally, tip air injection is used to reduce the adverse influence of total pressure inlet distortion on the aerodynamic stability. In the present work, an experimental investigation on the effects of tip air injection on the stability of a two-stage low-speed axial compressor with total pressure inlet distortion was carried out. A flat baffle generated the total pressure distortion at the inlet of the compressor. The stall margin of the compressor was reduced significantly by the total pressure distortion. When the dimensionless insertion depth of the flat baffle was 0.45, the stall margin decreased to 11.4%. Under the total pressure inlet distortion, tip air injection effectively improved the distortion resistance capability of the compressor. The circumferential layout of the nozzle played a critical role in the stability expansion effect of tip air injection under the inlet flow condition of the total pressure distortion. The modal wave disturbance was likely to occur in the distortion-affected region (the low-pressure region and the mixing region). Tip air injection did not inhibit the generation of the modal wave but restrained the development of the modal wave into the stall cell. It improved the low-speed compressor’s tolerance to the modal wave and allowed a higher amplitude modal wave to occur.


2021 ◽  
Author(s):  
Oliver Reutter ◽  
Gerd Enders ◽  
Theodor Dabrock ◽  
Andreas Peters

2021 ◽  
Author(s):  
Dongming Cao ◽  
Dingxi Wang ◽  
Xiuquan Huang
Keyword(s):  

2021 ◽  
Author(s):  
Georgios Athanasakos ◽  
Nikolaos Aretakis ◽  
Alexios Alexiou ◽  
Konstantinos Mathioudakis

2021 ◽  
Author(s):  
ANDREW ORME ◽  
Steve Gorrell ◽  
Addison Pulsiver

Sign in / Sign up

Export Citation Format

Share Document