Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations

2014 ◽  
Vol 758 ◽  
pp. 5-62 ◽  
Author(s):  
Iván Bermejo-Moreno ◽  
Laura Campo ◽  
Johan Larsson ◽  
Julien Bodart ◽  
David Helmer ◽  
...  

AbstractWe present wall-modelled large-eddy simulations (WLES) of oblique shock waves interacting with the turbulent boundary layers (TBLs) (nominal$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\delta _{99}=5.4\ \mathrm{mm}$and${\mathit{Re}}_{\theta }\approx 1.4\times 10^4$) developed inside a duct with an almost-square cross-section ($45\ \mathrm{mm}\times 47.5\ \mathrm{mm}$) to investigate three-dimensional effects imposed by the lateral confinement of the flow. Three increasing strengths of the incident shock are considered, for a constant Mach number of the incoming air stream$M\approx 2$, by varying the height (1.1, 3 and 5 mm) of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes (one near the centre of the duct and three near one of the sidewalls) for the 1.1 and 3 mm-high wedge cases. The instantaneous and time-averaged structure of the flow for the stronger-interaction case (5 mm-high wedge), which shows mean flow reversal, is then investigated. Additional spanwise-periodic simulations are performed to elucidate the influence of the sidewalls, and it is found that the structure and location of the shock system, as well as the size of the separation bubble, are significantly modified by the lateral confinement. A Mach stem at the first reflected interaction is present in the simulation with sidewalls, whereas a regular shock intersection results for the spanwise-periodic case. Low-frequency unsteadiness is observed in all interactions, being stronger for the secondary shock reflections of the shock train developed inside the duct. The downstream evolution of secondary turbulent flows developed near the corners of the duct as they traverse the shock system is also studied.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Dario Amirante ◽  
Nicholas J. Hills

Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


Author(s):  
Thomas L. Kaiser ◽  
Thierry Poinsot ◽  
Kilian Oberleithner

The hydrodynamic instability in an industrial, two-staged, counter-rotative, swirled injector of highly complex geometry is under investigation. Large eddy simulations show that the complicated and strongly nonparallel flow field in the injector is superimposed by a strong precessing vortex core. Mean flow fields of large eddy simulations, validated by experimental particle image velocimetry measurements are used as input for both local and global linear stability analysis. It is shown that the origin of the instability is located at the exit plane of the primary injector. Mode shapes of both global and local linear stability analysis are compared to a dynamic mode decomposition based on large eddy simulation snapshots, showing good agreement. The estimated frequencies for the instability are in good agreement with both the experiment and the simulation. Furthermore, the adjoint mode shapes retrieved by the global approach are used to find the best location for periodic forcing in order to control the precessing vortex core.


Author(s):  
J. Boudet ◽  
A. Cahuzac ◽  
P. Borgnat ◽  
E. Lévêque ◽  
F. Toschi

Author(s):  
Christian Helcig ◽  
Stefan aus der Wiesche ◽  
Stephan Uhkoetter

The aim of this study is to examine the influence of passive jets interacting with the separation region of the flow around a blunt plate. Experimental and numerical analysis are used to measure the velocity within the separation and reattachment region of the blunt plate with different passive jet configurations. A blunt plate was placed in a low speed wind tunnel to conduct Laser-Doppler anemometry (LDA) measurements at Re = 2.06 × 104. For the numerical procedure a dynamical sub-grid model for Large Eddy Simulations (LES) was used. For all configurations the flow characteristics such as the reattachment length were determined to characterize the boundary layer. The passive jets showed a strong influence by interacting with the boundary layer of the blunt plate.


2019 ◽  
Vol 21 (2) ◽  
pp. 318-334 ◽  
Author(s):  
Pedro Xavier Ramos ◽  
Laurent Schindfessel ◽  
João Pedro Pêgo ◽  
Tom De Mulder

Abstract This paper describes the application of four Large Eddy Simulations (LES) to an open-channel confluence flow, making use of a frictionless rigid-lid to treat the free-surface. Three simulations are conducted with a flat rigid-lid, at different elevations. A fourth simulation is carried out with a curved rigid-lid which is a closer approximation to the real free-surface of the flow. The curved rigid-lid is obtained from the time-averaged pressure field on the flat rigid-lid from one of the initial three simulations. The aim is to investigate the limitations of the free-surface treatment by means of a rigid-lid in the simulation of an asymmetric confluence, showing the differences that both approaches produce in terms of mean flow, secondary flow and turbulence. After validation with experimental data, the predictions are used to understand the differences between adopting a flat and a curved rigid-lid onto the confluence hydrodynamics. For the present flow case, although it was characterized by a moderately low downstream Froude number (Fr ≈ 0.37), it was found that an oversimplification of the numerical treatment of the free-surface leads to a decreased accuracy of the predictions of the secondary flow and turbulent kinetic energy.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Sign in / Sign up

Export Citation Format

Share Document