scholarly journals Phoretic self-propulsion at large Péclet numbers

2015 ◽  
Vol 768 ◽  
Author(s):  
Ehud Yariv ◽  
Sébastien Michelin

We analyse the self-diffusiophoresis of a spherical particle animated by a non-uniform chemical reaction at its boundary. We consider two models of solute absorption, one with a specified distribution of interfacial solute flux and one where this flux is governed by first-order kinetics with a specified distribution of rate constant. We employ a macroscale model where the short-range interaction of the solute with the particle boundary is represented by an effective slip condition. The solute transport is governed by an advection–diffusion equation. We focus upon the singular limit of large Péclet numbers, $\mathit{Pe}\gg 1$. In the fixed-flux model, the excess-solute concentration is confined to a narrow boundary layer. The scaling pertinent to that limit allows the problem governing the solute concentration to be decoupled from the flow field. The resulting nonlinear boundary-layer problem is handled using a transformation to stream-function coordinates and a subsequent application of Fourier transforms, and is thereby reduced to a nonlinear integral equation governing the interfacial concentration. Its solution provides the requisite approximation for the particle velocity, which scales as $\mathit{Pe}^{-1/3}$. In the fixed-rate model, large Péclet numbers may be realized in different limit processes. We consider the case of large swimmers or strong reaction, where the Damköhler number $\mathit{Da}$ is large as well, scaling as $\mathit{Pe}$. In that double limit, where no boundary layer is formed, we obtain a closed-form approximation for the particle velocity, expressed as a nonlinear functional of the rate-constant distribution; this velocity scales as $\mathit{Pe}^{-2}$. Both the fixed-flux and fixed-rate asymptotic predictions agree with the numerical values provided by computational solutions of the nonlinear transport problem.

2019 ◽  
Vol 14 (3) ◽  
pp. 306 ◽  
Author(s):  
Itrat Abbas Mirza ◽  
Dumitru Vieru ◽  
Najma Ahmed

The one-dimensional fractional advection–diffusion equation with Robin-type boundary conditions is studied by using the Laplace and finite sine-cosine Fourier transforms. The mathematical model with memory is developed by employing the generalized Fick’s law with time-fractional Caputo derivative. The influence of the fractional parameter (the non-local effects) on the solute concentration is studied. It is found that solute concentration can be minimized by decreasing the memory parameter. Also, it is found that, at small values of time the ordinary model leads to minimum concentration, while at large values of the time the fractional model is recommended.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 542
Author(s):  
Alaa Mashjel Ali ◽  
Khalid T. Rashid ◽  
Ali Amer Yahya ◽  
Hasan Sh. Majdi ◽  
Issam K. Salih ◽  
...  

In the current work, a Gum, Arabic-modified Graphene (GGA), has been synthesized via a facile green method and employed for the first time as an additive for enhancement of the PPSU ultrafiltration membrane properties. A series of PPSU membranes containing very low (0–0.25) wt.% GGA were prepared, and their chemical structure and morphology were comprehensively investigated through atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Besides, thermogravimetric analysis (TGA) was harnessed to measure thermal characteristics, while surface hydrophilicity was determined by the contact angle. The PPSU-GGA membrane performance was assessed through volumetric flux, solute flux, and retention of sodium alginate solution as an organic polysaccharide model. Results demonstrated that GGA structure had been successfully synthesized as confirmed XRD patterns. Besides, all membranes prepared using low GGA content could impart enhanced hydrophilic nature and permeation characteristics compared to pristine PPSU membranes. Moreover, greater thermal stability, surface roughness, and a noticeable decline in the mean pore size of the membrane were obtained.


1997 ◽  
Vol 119 (2) ◽  
pp. 281-288
Author(s):  
B. M. Abraham ◽  
W. L. Keith

A method for conditionally sampling the spatial field of the wall pressure beneath a turbulent boundary layer in order to search for high magnitude events and calculate the corresponding wavenumber spectrum is presented. The high magnitude events are found using a simple peak detection algorithm at a fixed instant in time and the wavenumber spectra are calculated using discrete Fourier transforms. The frequency of occurrence for high magnitude positive events is found to be approximately the same as for high magnitude negative events. The contribution of the high magnitude events to the rms wall pressure for various trigger levels is calculated and compared with results from similar experimental studies performed in the time domain. The high magnitude events are shown to occur infrequently and to contribute significantly to the rms wall pressure. Wavenumber spectra from the high magnitude positive and negative events are calculated and compared with the unconditionally sampled spectra. The high magnitude events contain energy focused around a particular stream-wise wavenumber and have high broadband spectral levels.


2018 ◽  
Vol 57 (1) ◽  
pp. 185-192 ◽  
Author(s):  
Davidson Moreira ◽  
Marcelo Moret

AbstractIn this study, an analytical solution for the steady-state fractional advection–diffusion equation was obtained to simulate the atmospheric dispersion of pollutants in a vertically inhomogeneous planetary boundary layer. The authors propose a method that uses the modified generalized integral Laplace transform technique to solve the transformed problem with a fractional derivative, resulting in a more general solution. The model results were compared with the fractional Gaussian model and demonstrate that, when considering an experimental dataset under moderately unstable conditions, fractional-derivative models perform better than traditional integer-order models.


2021 ◽  
Author(s):  
Dongmei Yang ◽  
Xiaolin Wang ◽  
Mengqi Yin ◽  
Yongjiang Zhang ◽  
Guoquan Peng ◽  
...  

We derived a steady-state model of whole root pressure generation through the combined action of all parallel segments of fine roots. This may be the first complete analytical solution for root pressure, which can be applied to complex roots/shoots. The osmotic volume of a single root is equal to that of the vessel lumen in fine roots and adjacent apoplastic spaces. Water uptake occurs via passive osmosis and active solute uptake (J_s^*, osmol s-1), resulting in the osmolal concentration Cr (mol·kg-1 of water) at a fixed osmotic volume. Solute loss occurs via two passive processes: radial diffusion of solute Km (Cr-Csoil), where Km is the diffusional constant and Csoil is the soil-solute concentration) from fine roots to soil and mass flow of solute and water into the whole plant from the end of the fine roots. The proposed model predicts the quadratic function of root pressure P_r^2+bP_r+c=0, where b and c are the functions of plant hydraulic resistance, soil water potential, solute flux, and gravitational potential. The present study investigates the theoretical dependencies of Pr on the factors detailed above and demonstrates the root pressure-mediated distribution of water through the hydraulic architecture of a 6.8-m-tall bamboo shoot.


1995 ◽  
Vol 305 ◽  
pp. 29-46 ◽  
Author(s):  
E. S. Asmolov

Dusty-gas flow in laminar boundary layer over a body with a curved surface is considered. In addition to Stokes drag, particles experience a centrifugal force and lift which is due to fluid shear. The body size L is taken to be much greater than the relaxation length of the particle velocity due to the action of Stokes drag, & Lambda;st and is of the same order as or less than the relaxation length due to the action of lift. Λsa. Using an asymptotic approach, momentum equations for the particle phase are reduced to an algebraic equation accounting for the variation of lift coefficient with the shear and the slip velocity. Particle velocity and density are computed for the axisymmetric boundary layer in the neighbourhood of the front stagnation point of a blunt body of size much less than Λsa. It is shown that downstream of some point on the wall (the separation point) particle normal velocity becomes non-zero. As a result particle streamlines turn away from the wall, and a particle-free zone arises. The cause of separation is the lift effect; the centrifugal force cannot make the particle flow separate. This conclusion is extended to the case when L ∼ Λsa. The position of separation for the flow past a sphere is evaluated as a function of the ratio of its radius r′ and relaxation length. Dust flow ceases to separate when this value is greater than a critical value r′c /Λsa ≈ 29.2.


2019 ◽  
Vol 3 (2) ◽  
pp. 44
Author(s):  
Chang ◽  
Keh

The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite Péclet number . The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order . It is found that the perturbed solute concentration and fluid velocity distributions have the order , but the leading correction to the particle velocity has the higher order . The correction to the particle velocity to the order can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at can be about 17% smaller or 0.2% greater than that at . Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order .


Sign in / Sign up

Export Citation Format

Share Document