scholarly journals Inertial-particle accelerations in turbulence: a Lagrangian closure

2016 ◽  
Vol 798 ◽  
pp. 187-200 ◽  
Author(s):  
S. Vajedi ◽  
K. Gustavsson ◽  
B. Mehlig ◽  
L. Biferale

The distribution of particle accelerations in turbulence is intermittent, with non-Gaussian tails that are quite different for light and heavy particles. In this article we analyse a closure scheme for the acceleration fluctuations of light and heavy inertial particles in turbulence, formulated in terms of Lagrangian correlation functions of fluid tracers. We compute the variance and the flatness of inertial-particle accelerations and we discuss their dependency on the Stokes number. The closure incorporates effects induced by the Lagrangian correlations along the trajectories of fluid tracers, and its predictions agree well with results of direct numerical simulations of inertial particles in turbulence, provided that the effects induced by inertial preferential sampling of heavy/light particles outside/inside vortices are negligible. In particular, the scheme predicts the correct functional behaviour of the acceleration variance, as a function of $St$, as well as the presence of a minimum/maximum for the flatness of the acceleration of heavy/light particles, in good qualitative agreement with numerical data. We also show that the closure works well when applied to the Lagrangian evolution of particles using a stochastic surrogate for the underlying Eulerian velocity field. Our results support the conclusion that there exist important contributions to the statistics of the acceleration of inertial particles independent of the preferential sampling. For heavy particles we observe deviations between the predictions of the closure scheme and direct numerical simulations, at Stokes numbers of order unity. For light particles the deviation occurs for larger Stokes numbers.

2014 ◽  
Vol 759 ◽  
Author(s):  
G. H. Good ◽  
P. J. Ireland ◽  
G. P. Bewley ◽  
E. Bodenschatz ◽  
L. R. Collins ◽  
...  

AbstractWe investigate the settling speeds and root mean square (r.m.s.) velocities of inertial particles in isotropic turbulence with gravity using experiments with water droplets in air turbulence from 32 loudspeaker jets and direct numerical simulations (DNS). The dependence on particle inertia, gravity and the scales of both the smallest and largest turbulent eddies is investigated. We isolate the mechanisms of turbulence settling modification and find that the reduced settling speeds of large particles in experiments are due to nonlinear drag effects. We demonstrate using DNS that reduced settling speeds with linear drag (e.g. see Nielsen, J. Sedim. Petrol., vol. 63, 1993, pp. 835–838) only arise in artificial flows that, by design, eliminate preferential sweeping by the eddies. Gravity and inertia both reduce the particle r.m.s. velocities and falling particles are more responsive to vertical than to horizontal fluctuations. The model by Wang & Stock (J. Atmos. Sci., vol. 50, 1993, pp. 1897–1913) captures these trends.


2008 ◽  
Vol 237 (14-17) ◽  
pp. 2084-2089 ◽  
Author(s):  
R. Volk ◽  
E. Calzavarini ◽  
G. Verhille ◽  
D. Lohse ◽  
N. Mordant ◽  
...  

1993 ◽  
Vol 256 ◽  
pp. 27-68 ◽  
Author(s):  
Lian-Ping Wang ◽  
Martin R. Maxey

The average settling velocity in homogeneous turbulence of a small rigid spherical particle, subject to a Stokes drag force, has been shown to differ from that in still fluid owing to a bias from the particle inertia (Maxey 1987). Previous numerical results for particles in a random flow field, where the flow dynamics were not considered, showed an increase in the average settling velocity. Direct numerical simulations of the motion of heavy particles in isotropic homogeneous turbulence have been performed where the flow dynamics are included. These show that a significant increase in the average settling velocity can occur for particles with inertial response time and still-fluid terminal velocity comparable to the Kolmogorov scales of the turbulence. This increase may be as much as 50% of the terminal velocity, which is much larger than was previously found. The concentration field of the heavy particles, obtained from direct numerical simulations, shows the importance of the inertial bias with particles tending to collect in elongated sheets on the peripheries of local vortical structures. This is coupled then to a preferential sweeping of the particles in downward moving fluid. Again the importance of Kolmogorov scaling to these processes is demonstrated. Finally, some consideration is given to larger particles that are subject to a nonlinear drag force where it is found that the nonlinearity reduces the net increase in settling velocity.


2016 ◽  
Vol 796 ◽  
pp. 617-658 ◽  
Author(s):  
Peter J. Ireland ◽  
Andrew D. Bragg ◽  
Lance R. Collins

In this study, we analyse the statistics of both individual inertial particles and inertial particle pairs in direct numerical simulations of homogeneous isotropic turbulence in the absence of gravity. The effect of the Taylor microscale Reynolds number, $R_{{\it\lambda}}$, on the particle statistics is examined over the largest range to date (from $R_{{\it\lambda}}=88$ to 597), at small, intermediate and large Kolmogorov-scale Stokes numbers $St$. We first explore the effect of preferential sampling on the single-particle statistics and find that low-$St$ inertial particles are ejected from both vortex tubes and vortex sheets (the latter becoming increasingly prevalent at higher Reynolds numbers) and preferentially accumulate in regions of irrotational dissipation. We use this understanding of preferential sampling to provide a physical explanation for many of the trends in the particle velocity gradients, kinetic energies and accelerations at low $St$, which are well represented by the model of Chun et al. (J. Fluid Mech., vol. 536, 2005, pp. 219–251). As $St$ increases, inertial filtering effects become more important, causing the particle kinetic energies and accelerations to decrease. The effect of inertial filtering on the particle kinetic energies and accelerations diminishes with increasing Reynolds number and is well captured by the models of Abrahamson (Chem. Engng Sci., vol. 30, 1975, pp. 1371–1379) and Zaichik & Alipchenkov (Intl J. Multiphase Flow, vol. 34 (9), 2008, pp. 865–868), respectively. We then consider particle-pair statistics, and focus our attention on the relative velocities and radial distribution functions (RDFs) of the particles, with the aim of understanding the underlying physical mechanisms contributing to particle collisions. The relative velocity statistics indicate that preferential sampling effects are important for $St\lesssim 0.1$ and that path-history/non-local effects become increasingly important for $St\gtrsim 0.2$. While higher-order relative velocity statistics are influenced by the increased intermittency of the turbulence at high Reynolds numbers, the lower-order relative velocity statistics are only weakly sensitive to changes in Reynolds number at low $St$. The Reynolds-number trends in these quantities at intermediate and large $St$ are explained based on the influence of the available flow scales on the path-history and inertial filtering effects. We find that the RDFs peak near $St$ of order unity, that they exhibit power-law scaling for low and intermediate $St$ and that they are largely independent of Reynolds number for low and intermediate $St$. We use the model of Zaichik & Alipchenkov (New J. Phys., vol. 11, 2009, 103018) to explain the physical mechanisms responsible for these trends, and find that this model is able to capture the quantitative behaviour of the RDFs extremely well when direct numerical simulation data for the structure functions are specified, in agreement with Bragg & Collins (New J. Phys., vol. 16, 2014a, 055013). We also observe that at large $St$, changes in the RDF are related to changes in the scaling exponents of the relative velocity variances. The particle collision kernel closely matches that computed by Rosa et al. (New J. Phys., vol. 15, 2013, 045032) and is found to be largely insensitive to the flow Reynolds number. This suggests that relatively low-Reynolds-number simulations may be able to capture much of the relevant physics of droplet collisions and growth in the adiabatic cores of atmospheric clouds.


2012 ◽  
Vol 698 ◽  
pp. 160-167 ◽  
Author(s):  
Mathieu Gibert ◽  
Haitao Xu ◽  
Eberhard Bodenschatz

AbstractWe report experimental results on the dynamics of heavy particles of the size of the Kolmogorov scale in a fully developed turbulent flow. The mixed Eulerian structure function of two-particle velocity and acceleration difference vectors $\langle {\delta }_{r} \mathbi{v}\boldsymbol{\cdot} {\delta }_{r} {\mathbi{a}}_{\mathbi{p}} \rangle $ was observed to increase significantly with particle inertia for identical flow conditions. We show that this increase is related to a preferential alignment between these dynamical quantities. With increasing particle density the probability for those two vectors to be collinear was observed to grow. We show that these results are consistent with the preferential sampling of strain-dominated regions by inertial particles.


2001 ◽  
Vol 440 ◽  
pp. 117-145 ◽  
Author(s):  
J. DÁVILA ◽  
J. C. R. HUNT

The trajectories of small heavy particles in a gravitational field, having fall speed in still fluid V˜T and moving with velocity V˜ near fixed line vortices with radius R˜v and circulation Γ˜, are determined by a balance between the settling process and the centrifugal effects of the particles' inertia. We show that the main characteristics are determined by two parameters: the dimensionless ratio VT = V˜TR˜v/Γ˜ and a new parameter (Fp) given by the ratio between the relaxation time of the particle (t˜p) and the time (Γ˜/V˜2T) for the particle to move around a vortex when VT is of order unity or small.The average time ΔT˜ for particles to settle between two levels a distance Y˜0 above and below the vortex (where Y˜0 [Gt ] Γ˜/VT) and the average vertical velocity of particles 〈Vy〉L along their trajectories depends on the dimensionless parameters VT and Fp. The bulk settling velocity 〈Vy〉B = 2Y˜0/〈ΔT˜〉, where the average value of 〈ΔT˜〉 is taken over all initial particle positions of the upper level, is only equal to 〈V˜y〉L for small values of the effective volume fraction within which the trajectories of the particles are distorted, α = (Γ˜/V˜T)2/ Y˜20. It is shown here how 〈Vy〉B is related to Δ&η;(X˜0), the difference between the vertical settling distances with and without the vortex for particles starting on (X˜0, Y˜0) and falling for a fixed period Δt˜T [Gt ] &Γtilde;/V˜2T; 〈V˜y〉B = V˜T[1 − αD], where D = ∫∞−∞(Δ&η;dX˜0/ (&Γtilde;/V˜T)2) is the drift integral. The maximum value of 〈V˜〉B for any constant value of VT occurs when Fp = FpM ∼ 1 and the minimum when Fp = Fpm > FpM, where typically 3 < Fpm < 5.Individual trajectories and the bulk quantities D and 〈Vy〉B have been calculated analytically in two limits, first Fp → 0, finite VT, and secondly VT [Gt ] 1. They have also been computed for the range 0 < Fp < 102, 0 < VT < 5 in the case of a Rankine vortex. The results of this study are consistent with experimental observations of the pattern of particle motion and on how the fall speed of inertial particles in turbulent flows (where the vorticity is concentrated in small regions) is typically up to 80% greater than in still fluid for inertial particles (Fp ∼ 1) whose terminal velocity is less than the root mean square of the fluid velocity, ũ′, and typically up to 20% less for particles with a terminal velocity larger than ũ′. If V˜T/ũ′ > 4 the differences are negligible.


Sign in / Sign up

Export Citation Format

Share Document