Resonance wave pumping with surface waves

2016 ◽  
Vol 811 ◽  
pp. 1-36 ◽  
Author(s):  
Remi A. Carmigniani ◽  
Michel Benoit ◽  
Damien Violeau ◽  
Morteza Gharib

In this paper, we present a novel extension of impedance (Liebau) wave pumping to a free-surface condition where resonance pumping could be used for hydraulic energy harvesting. Similar pumping behaviours are reported. Surface envelopes of the free surface are shown and outline two different dynamics: U-tube oscillator and wave/resonance pumping. The latter is particularly interesting, since, from an oscillatory motion, a unidirectional flow with small to moderate oscillations is generated. A linear theory is developed to evaluate pseudo-analytically the resonance frequencies of the pump using eigenfunction expansions, and a simplified model is proposed to understand the main pumping mechanism in this type of pump. It is found that the Stokes mass transport is driving the pump. The conversion of energy from paddle oscillation to mean flow is evaluated. Efficiency up to 22 % is reported.

Author(s):  
D. C. Hong ◽  
Y. Y. Kim ◽  
S. H. Han

The hydrodynamic interaction of two bodies floating in waves is studied. The two-body hydrodynamic coefficients of added mass, wave damping and exciting forces and moments are calculated using the irregular frequency free radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function (Hong 1987) according to the conventional two-body analysis. It is well known that the conventional two-body potential solution with usual grid fineness largely overestimates the hydrodynamic coefficients at and near the resonance frequency of the free surface in the gap between two floating bodies moored side-by-side in close proximity (Huijsmans et al. 2001, Hong et al. 2005). The two-body diffraction problem has been solved by both the conventional two-body analysis without damped free surface condition and a boundary matching method with and without damped free surface condition. Numerical results of the wave exciting force coefficients of two identical caissons floating side by side obtained by the two methods have been presented and the discrepancies between them have been discussed. Particular attention is paid to the wave elevation in the gap at the resonance frequencies. Amplitudes and phases of the scattering wave elevations in the gap at the first three free surface resonance frequencies computed by the boundary matching method without damped free surface condition have been presented. It has also been shown that the unrealistic wave elevation due to the resonance of the free surface in the gap can be reduced by imposing the damped free surface condition upon the flow in the gap as used in the oscillating water column hydrodynamics (Hong et al. 2004).


1995 ◽  
Vol 23 (1) ◽  
pp. 2-10 ◽  
Author(s):  
J. K. Thompson

Abstract Vehicle interior noise is the result of numerous sources of excitation. One source involving tire pavement interaction is the tire air cavity resonance and the forcing it provides to the vehicle spindle: This paper applies fundamental principles combined with experimental verification to describe the tire cavity resonance. A closed form solution is developed to predict the resonance frequencies from geometric data. Tire test results are used to examine the accuracy of predictions of undeflected and deflected tire resonances. Errors in predicted and actual frequencies are shown to be less than 2%. The nature of the forcing this resonance as it applies to the vehicle spindle is also examined.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
G. J. Lee ◽  
M. S. Shin

The radiation-diffraction potential of a ship advancing in waves is studied using the three-dimensional frequency-domain forward-speed free-surface Green function (Brard 1948) and the forward-speed Green integral equation (Hong 2000). Numerical solutions are obtained by making use of a second-order inner collocation boundary element method which makes it possible to take account of the line integral along the waterline in a rigorous manner (Hong et al. 2008). The present forward-speed Green integral equation includes not only the usual free surface condition for the potential but also the adjoint free surface condition for the forward-speed free-surface Green function as indicated by Brard (1972). Comparison of the present numerical results of the heave-heave wave damping coefficients and the experimental results for the Wigley ship models I, II and III (Journee 1992) has been presented. These coefficients are compared with those calculated without taking into account of the line integral along the waterline in order to show the forward speed effect represented by the waterline integral when it is properly included in the free-surface Green integral equation. Comparison of the present numerical results and the equivalent time-domain results (Hong et al. 2013) has also been presented.


Author(s):  
Shanti Bhushan ◽  
Pablo Carrica ◽  
Jianming Yang ◽  
Frederick Stern

Scalability studies and computations using the largest grids to date for free-surface flows are performed using message-passing interface (MPI)-based CFDShip-Iowa toolbox curvilinear (V4) and Cartesian (V6) grid solvers on Navy high-performance computing systems. Both solvers show good strong scalability up to 2048 processors, with V6 showing somewhat better performance than V4. V6 also outperforms V4 in terms of the memory requirements and central processing unit (CPU) time per time-step per grid point. The explicit solvers show better scalability than the implicit solvers, but the latter allows larger time-step sizes, resulting in a lower total CPU time. The multi-grid HYPRE solver shows better scalability than the portable, extensible toolkit for scientific computation solver. The main scalability bottleneck is identified to be the pressure Poisson solver. The memory bandwidth test suggests that further scalability improvements could be obtained by using hybrid MPI/open multi-processing (OpenMP) parallelization. V4-detached eddy simulation (DES) on a 300 M grid for the surface combatant model DTMB 5415 in the straight-ahead condition provides a plausible description of the vortical structures and mean flow patterns observed in the experiments. However, the vortex strengths are over predicted and the turbulence is not resolved. V4-DESs on up to 250 M grids for DTMB 5415 at 20° static drift angle significantly improve the forces and moment predictions compared to the coarse grid unsteady Reynolds averaged Navier–Stokes, due to the improved resolved turbulence predictions. The simulations provide detailed resolution of the free-surface and breaking pattern and vortical and turbulent structures, which will guide planned experiments. V6 simulations on up to 276 M grids for DTMB 5415 in the straight-ahead condition predict diffused vortical structures due to poor wall-layer predictions. This could be due to the limitations of the wall-function implementation for the immersed boundary method.


2009 ◽  
Author(s):  
Jérémie Raymond ◽  
Jean-Marie Finot ◽  
Jean-Michel Kobus ◽  
Gérard Delhommeau ◽  
Patrick Queutey ◽  
...  

The discussion is based on results gathered during the first two years of a 3 years research program for the benefits of Groupe Finot-Conq, Naval Architects. The introduction presents the objectives of the program: Setting up a practical method using numerical and experimental available tools to design fast planing sailing yachts. The aim of this paper is to compare advantages and disadvantages of four different kinds of CFD codes which are linear and non-linear potential flow approach, RANSE solver using finite differences method and RANSE solver using volume of fluid method. The Fluid Mechanics Laboratory of the Ecole Centrale de Nantes (France) has developed those three approaches so those homemade codes will be used for this study. The first one is REVA, a potential flow code with a linearised free surface condition. ICARE is a RANSE solver using finite differences method with a non linear free surface condition. It is extensively used for industrial projects as for sailing yachts projects (ACC for example). ISIS-CFD is a RANSE solver using finite volume method to build the spatial discretization of the transport equations with unstructured mesh. The latter is able to compute sprays for fast planing ships but is also the slower in terms of CPU time. In addition, we had the opportunity to test FS-FLOW which is a potential flow code with a non linear free surface condition distributed by FRIENDSHIP CONSULTING. Numerical results for the four codes are compared with the other codes' results as with tank tests data. Those tank tests were made using captive model test technique on two Open60' models. Reasons of the choice of the captive model technique are explained and experimental procedures are briefly described. Comparisons between codes are mainly based on the easiness of use, the cost in CPU time and the confidence we can have in the results as a function of the boat speed. Flow visualizations, pressure maps, free surface deformation are shown and compared. Analysis of local quantities integrated or by zone is also presented. Results are analyzed focusing on the ability of each code to represent flow dynamics for every speed with a special attention to high speeds. The practical question raised is to know which kind of answers each code can bring in terms of tendencies evaluation or sensitivity to hull geometry modifications. The main goal is to be able to judge if those codes are able to make reliable and consistent comparisons of different designs. Conclusion is that none of the codes is perfect and gather all the advantages. It is still difficult to propose a definitive methodology to estimate hydrodynamic performances at every speed and at every stage of the design process. Knowing each code limitations, it appears more coherent to use each of them at different stages of the design process: the quickest and less reliable to understand the main tendencies and the longest and more precise to validate the final options.


1982 ◽  
Vol 1 (18) ◽  
pp. 22
Author(s):  
J.W. Gonsalves ◽  
D.H. Swart

The concept of mass transport is theoretically discussed within the framework provided by Vocoidal theory. The Lagrangian mass transport is divided into two parts; firstly treating the fluid as being inviscid and secondly, incorporating viscosity by means of the free surface and bottom boundaries. Eulerian mass transport is defined and is shown to correspond, in deep water, to the net flow predicted by Stokes and others.


2019 ◽  
Vol 21 (2) ◽  
pp. 318-334 ◽  
Author(s):  
Pedro Xavier Ramos ◽  
Laurent Schindfessel ◽  
João Pedro Pêgo ◽  
Tom De Mulder

Abstract This paper describes the application of four Large Eddy Simulations (LES) to an open-channel confluence flow, making use of a frictionless rigid-lid to treat the free-surface. Three simulations are conducted with a flat rigid-lid, at different elevations. A fourth simulation is carried out with a curved rigid-lid which is a closer approximation to the real free-surface of the flow. The curved rigid-lid is obtained from the time-averaged pressure field on the flat rigid-lid from one of the initial three simulations. The aim is to investigate the limitations of the free-surface treatment by means of a rigid-lid in the simulation of an asymmetric confluence, showing the differences that both approaches produce in terms of mean flow, secondary flow and turbulence. After validation with experimental data, the predictions are used to understand the differences between adopting a flat and a curved rigid-lid onto the confluence hydrodynamics. For the present flow case, although it was characterized by a moderately low downstream Froude number (Fr ≈ 0.37), it was found that an oversimplification of the numerical treatment of the free-surface leads to a decreased accuracy of the predictions of the secondary flow and turbulent kinetic energy.


The mass transport velocity in water waves propagating over an elastic bed is investigated. Water is assumed to be incompressible and slightly viscous. The elastic bed is also incompressible and satisfies the Hooke’s law. For a small amplitude progressive wave perturbation solutions via a boundary-layer approach are obtained. Because the wave amplitude is usually larger than the viscous boundary layer thickness and because the free surface and the interface between water and the elastic bed are moving, an orthogonal curvilinear coordinate system (Longuet-Higgins 1953) is used in the analysis of free surface and interfacial boundary layers so that boundary conditions can be applied on the actual moving surfaces. Analytical solutions for the mass transport velocity inside the boundary layer adjacent to the elastic seabed and in the core region of the water column are obtained. The mass transport velocity above a soft elastic bed could be twice of that over a rigid bed in the shallow water.


Sign in / Sign up

Export Citation Format

Share Document