An analytical theory for the capillary bridge force between spheres

2016 ◽  
Vol 812 ◽  
pp. 129-151 ◽  
Author(s):  
N. P. Kruyt ◽  
O. Millet

An analytical theory has been developed for properties of a steady, axisymmetric liquid–gas capillary bridge that is present between two identical, perfectly wettable, rigid spheres. In this theory the meridional profile of the capillary bridge surface is represented by a part of an ellipse. Parameters in this geometrical description are determined from the boundary conditions at the three-phase contact circle at the sphere and at the neck (i.e. in the middle between the two spheres) and by the condition that the mean curvature be equal at the three-phase contact circle and at the neck. Thus, the current theory takes into account properties of the governing Young–Laplace equation, contrary to the often-used toroidal approximation. Expressions have been developed analytically that give the geometrical parameters of the elliptical meridional profile as a function of the capillary bridge volume and the separation between the spheres. A rupture criterion has been obtained analytically that provides the maximum separation between the spheres as a function of the capillary bridge volume. This rupture criterion agrees well with a rupture criterion from the literature that is based on many numerical solutions of the Young–Laplace equation. An expression has been formulated analytically for the capillary force as a function of the capillary bridge volume and the separation between the spheres. The theoretical predictions for the capillary force agree well with the capillary forces obtained from the numerical solutions of the Young–Laplace equation and with those according to a comprehensive fit from the literature (that is based on many numerical solutions of the Young–Laplace equation), especially for smaller capillary bridge volumes.

1999 ◽  
Vol 96 (9) ◽  
pp. 1335-1339 ◽  
Author(s):  
ALAN E. VAN GIESSEN, DIRK JAN BUKMAN, B.

2020 ◽  
Vol 55 (1) ◽  
pp. 32-37
Author(s):  
A. Yu. Vorob’ev ◽  
V. A. Nebol’sin ◽  
N. Swaikat ◽  
V. A. Yuriev

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Enno Wagner ◽  
Peter Stephan

In a special boiling cell, vapor bubbles are generated at single nucleation sites on top of a 20μm thick stainless steel heating foil. An infrared camera captures the rear side of the heating foil for analyzing the temperature distribution. The bubble shape is recorded through side windows with a high-speed camera. Global measurements were conducted, with the pure fluids FC-84 and FC-3284 and with its binary mixtures of 0.25, 0.5, and 0.75mole fraction. The heat transfer coefficient (HTC) in a binary mixture is less than the HTC in either of the single component fluid alone. Applying the correlation of Schlünder showed good agreement with the measurements (1982, “Über den Wärmeübergang bei der Blasenverdampfung von Gemischen,” Verfahrenstechnik, 16(9), pp. 692–698). Furthermore, local measurements were arranged with high lateral and temporal resolution for single bubble events. The wall heat flux was computed and analyzed, especially at the three-phase-contact line between liquid, vapor, and heated wall. The bubble volume and the vapor production rate were also investigated. For pure fluids, up to 50–60% of the latent heat flows through the three-phase-contact region. For mixtures, this ratio is clearly reduced and is about 35%.


2021 ◽  
Author(s):  
Aritra Kar ◽  
Awan Bhati ◽  
Palash V. Acharya ◽  
Ashish Mhadeshwar ◽  
Roger Bonnecaze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document