Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vortical disturbances

2017 ◽  
Vol 829 ◽  
pp. 681-730 ◽  
Author(s):  
Dongdong Xu ◽  
Yongming Zhang ◽  
Xuesong Wu

We study the nonlinear development and secondary instability of steady and unsteady Görtler vortices which are excited by free-stream vortical disturbances (FSVD) in a boundary layer over a concave wall. The focus is on low-frequency (long-wavelength) components of FSVD, to which the boundary layer is most receptive. For simplification, FSVD are modelled by a pair of oblique modes with opposite spanwise wavenumbers $\pm k_{3}$, and their intensity is strong enough (but still of low level) that the excitation and evolution of Görtler vortices are nonlinear. For the general case that the Görtler number $G_{\unicode[STIX]{x1D6EC}}$ (based on the spanwise wavelength $\unicode[STIX]{x1D6EC}$ of the disturbances) is $O(1)$, the formation and evolution of Görtler vortices are governed by the nonlinear unsteady boundary-region equations, supplemented by appropriate upstream and far-field boundary conditions, which characterize the impact of FSVD on the boundary layer. This initial-boundary-value problem is solved numerically. FSVD excite steady and unsteady Görtler vortices, which undergo non-modal growth, modal growth and nonlinear saturation for FSVD of moderate intensity. However, for sufficiently strong FSVD the modal stage is bypassed. Nonlinear interactions cause Görtler vortices to saturate, with the saturated amplitude being independent of FSVD intensity when $G_{\unicode[STIX]{x1D6EC}}\neq 0$. The predicted modified mean-flow profiles and structure of Görtler vortices are in excellent agreement with several steady experimental measurements. As the frequency increases, the nonlinearly generated harmonic component $(0,2)$ (which has zero frequency and wavenumber $2k_{3}$) becomes larger, and as a result the Görtler vortices appear almost steady. The secondary instability analysis indicates that Görtler vortices become inviscidly unstable in the presence of FSVD with a high enough intensity. Three types of inviscid unstable modes, referred to as sinuous (odd) modes I, II and varicose (even) modes I, are identified, and their relevance is delineated. The characteristics of dominant unstable modes, including their frequency ranges and eigenfunctions, are in good agreement with experiments. The secondary instability is intermittent when FSVD are unsteady and of low frequency. However, the intermittence diminishes as the frequency increases. The present theoretical framework, which allows for a detailed and integrated description of the key transition processes, from generation, through linear and nonlinear evolution, to the onset of secondary instability, represents a useful step towards predicting the pre-transitional flow and transition itself of the boundary layer over a blade in turbomachinery.

2011 ◽  
Vol 682 ◽  
pp. 362-396 ◽  
Author(s):  
LARS-UVE SCHRADER ◽  
LUCA BRANDT ◽  
TAMER A. ZAKI

Receptivity, disturbance growth and breakdown to turbulence in Görtler flow are studied by spatial direct numerical simulation (DNS). The boundary layer is exposed to free-stream vortical modes and localized wall roughness. We propose a normalization of the roughness-induced receptivity coefficient by the square root of the Görtler number. This scaling removes the dependence of the receptivity coefficient on wall curvature. It is found that vortical modes are more efficient at generating Görtler vortices than localized roughness. The boundary layer is most receptive to zero- and low-frequency free-stream vortices, exciting steady and slowly travelling Görtler modes. The associated receptivity mechanism is linear and involves the generation of boundary-layer streaks, which soon evolve into unstable Görtler vortices. This connection between transient and exponential amplification is absent on flat plates and promotes transition to turbulence on curved walls. We demonstrate that the Görtler boundary layer is also receptive to high-frequency free-stream vorticity, which triggers steady Görtler rolls via a nonlinear receptivity mechanism. In addition to the receptivity study, we have carried out DNS of boundary-layer transition due to broadband free-stream turbulence with different intensities and frequency spectra. It is found that nonlinear receptivity dominates over the linear mechanism unless the free-stream fluctuations are concentrated in the low-frequency range. In the latter case, transition is accelerated due to the presence of travelling Görtler modes.


2011 ◽  
Vol 682 ◽  
pp. 66-100 ◽  
Author(s):  
XUESONG WU ◽  
DIFEI ZHAO ◽  
JISHENG LUO

Excitation of Görtler vortices in a boundary layer over a concave wall by free-stream vortical disturbances is studied theoretically and numerically. Attention is focused on disturbances with long streamwise wavelengths, to which the boundary layer is most receptive. The appropriate initial-boundary-value problem describing both the receptivity process and the development of the induced perturbation is formulated for the generic case where the Görtler number GΛ (based on the spanwise wavelength Λ of the disturbance) is of order one. The impact of free-stream disturbances on the boundary layer is accounted for by the far-field boundary condition and the initial condition near the leading edge, both of which turn out to be the same as those given by Leib, Wundrow & Goldstein (J. Fluid Mech., vol. 380, 1999, p. 169) for the flat-plate boundary layer. Numerical solutions show that for a sufficiently small GΛ, the induced perturbation exhibits essentially the same characteristics as streaks occurring in the flat-plate case: it undergoes considerable amplification and then decays. However, when GΛ exceeds a critical value, the induced perturbation exhibits (quasi-) exponential growth. The perturbation acquires the modal shape of Görtler vortices rather quickly, and its growth rate approaches that predicted by local instability theories farther downstream, indicating that Görtler vortices are excited. The amplitude of the Görtler vortices excited is found to decrease as the frequency increases, with steady vortices being dominant. Comprehensive quantitative comparisons with experiments show that the eigenvalue approach predicts the modal shape adequately, but only the initial-value approach can accurately predict the entire evolution of the amplitude. An asymptotic analysis is performed for GΛ ≫ 1 to map out distinct regimes through which a perturbation with a fixed spanwise wavelength evolves. The centrifugal force starts to influence the generation of the pressure when x* ~ ΛRΛG−2/3Λ, where RΛ denotes the Reynolds number based on Λ. The induced pressure leads to full coupling of the momentum equations when x* ~ ΛRΛGΛ−2/5. This is the crucial regime linking the pre-modal and modal phases of the perturbation because the governing equations admit growing asymptotic eigensolutions, which develop into fully fledged Görtler vortices of inviscid nature when x* ~ ΛRΛ. From this position onwards, local eigenvalue formulations are mathematically justified. Görtler vortices continue to amplify and enter the so-called most unstable regime when x* ~ ΛRΛGΛ, and ultimately approach the right-branch regime when x* ~ ΛRΛG2Λ.


1996 ◽  
Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6%) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5×105 and was completed by 4.7×105. The transition was strongly influenced by the presence of stationary, streamwise, Görtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex, and five spanwise locations relative to a Görtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex, but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Görtler vortices in otherwise 2-D flows. Because these cases were run with a low value of free-stream turbulence intensity, the flow is not a replication of a gas turbine flow. However, the results do provide a base case for further work on transition on the pressure side of gas turbine airfoils, where concave curvature effects are combined with the effects of high free-stream turbulence and strong streamwise pressure gradients, for they show the effects of embedded streamwise vorticity in a flow that is free of high-turbulence effects.


1995 ◽  
Vol 297 ◽  
pp. 77-100 ◽  
Author(s):  
Fei Li ◽  
Mujeeb R. Malik

The nonlinear development of stationary Görtler vortices leads to a highly distorted mean flow field where the streamwise velocity depends strongly not only on the wall-normal but also on the spanwise coordinates. In this paper, the inviscid instability of this flow field is analysed by solving the two-dimensional eigenvalue problem associated with the governing partial differential equation. It is found that the flow field is subject to the fundamental odd and even (with respect to the Görtler vortex) unstable modes. The odd mode, which was also found by Hall & Horseman (1991), is initially more unstable. However, there exists an even mode which has higher growth rate further downstream. It is shown that the relative significance of these two modes depends upon the Görtler vortex wavelength such that the even mode is stronger for large wavelengths while the odd mode is stronger for short wavelengths. Our analysis also shows the existence of new subharmonic (both odd and even) modes of secondary instability. The nonlinear development of the fundamental secondary instability modes is studied by solving the (viscous) partial differential equations under a parabolizing approximation. The odd mode leads to the well-known sinuous mode of break down while the even mode leads to the horseshoe-type vortex structure. This helps explain experimental observations that Görtler vortices break down sometimes by sinuous motion and sometimes by developing a horseshoe vortex structure. The details of these break down mechanisms are presented.


The fully nonlinear development of small-wavelength Görtler vortices in a growing boundary layer is investigated by a combination of asymptotic and numerical methods. The starting point for the analysis is the weakly nonlinear theory of Hall ( J. Inst. Math. Applies 29, 173 (1982)) who discussed the initial development of large-wavenumber small-amplitude vortices in a neighbourhood of the location where they first become linearly unstable. That development is unusual in the context of nonlinear stability theory in that it is not described by the Stuart-Watson approach. In fact, the development is governed by a pair of coupled nonlinear partial differential evolution equations for the vortex flow and the mean flow correction. Here the further development of this interaction is considered for vortices so large that the mean flow correction driven by them is as large as the basic state. Surprisingly it is found that such a nonlinear interaction can still be described by asymptotic means. It is shown that the vortices spread out across the boundary layer and effectively drive the boundary layer. In fact, the system obtained by the equations for the fundamental component of the vortex generates a differential equation for the basic state. Thus the mean flow adjusts so as to make these large amplitude vortices locally neutral. Moreover in the region where the vortices exist the mean flow has a ‘square-root’ profile and the vortex velocity field can be written down in closed form. The upper and lower boundaries of the region of vortex activity are determined by a free-boundary problem involving the boundary-layer equations. In general it is found that this region ultimately includes almost all of the original boundary layer and much of the free stream. In this situation the mean flow has essentially no relation to the flow that exists in the absence of the vortices.


2018 ◽  
Vol 853 ◽  
pp. 111-149 ◽  
Author(s):  
Abouzar Ghasemi ◽  
Marten Klein ◽  
Andreas Will ◽  
Uwe Harlander

Direct numerical simulations (DNS) of the flow in various rotating annular confinements have been conducted to investigate the effects of wall inclination on secondary fluid motions due to an unstable boundary layer. The inner wall resembles a truncated cone (frustum) whose apex half-angle is varied from $18^{\circ }$ to $0^{\circ }$ (straight cylinder). The large inner radius $r_{1}$, the mean rotation rate $\unicode[STIX]{x1D6FA}_{0}$ and the kinematic viscosity $\unicode[STIX]{x1D708}$ were kept constant resulting in the constant Ekman number $E=\unicode[STIX]{x1D708}/(\unicode[STIX]{x1D6FA}_{0}r_{1}^{2})=4\times 10^{-5}$. Flows were excited by time-harmonic modulation of the inner wall’s rotation rate (so-called longitudinal libration) by prescribing the amplitude $\unicode[STIX]{x1D700}\unicode[STIX]{x1D6FA}_{0}$ and the forcing frequency $\unicode[STIX]{x1D714}=\unicode[STIX]{x1D6FA}_{0}$. By steepening the inner wall and hence reducing the effect of the local Coriolis force in the boundary layer three different flow regimes can be realized: a rotation-dominated, a libration-dominated and an intermediate regime. In the present study we focus on the libration-dominated regime. For small libration amplitudes (here $\unicode[STIX]{x1D700}=0.2$), a laminar Ekman–Stokes boundary layer (ESBL) is realized at the librating wall. With the aid of laminar boundary layer theory and DNS we show that the ESBL exhibits an oscillatory mass flux along the librating wall (Ekman property) and an oscillatory azimuthal velocity, which resembles a radially damped wave (Stokes property). For large libration amplitudes (here $\unicode[STIX]{x1D700}=0.8$), the DNS results exhibit an intermittently unstable ESBL, which turns centrifugally unstable during the prograde (faster) part of a libration period. This instability is due to the Stokes property and gives rise to Görtler vortices, which are found to be tilted with respect to the azimuth when the librating wall is at a finite angle relative to the axis of rotation. We show that this tilt is related to the Ekman property of the ESBL. This suggests that linear and nonlinear dynamics are equally important for this intermittent instability. Our DNS results indicate further that the Görtler vortices propagate into the fluid bulk where they generate an azimuthal mean flow. This mean flow is notably different from the mean flow driven in the case of the stable ESBL. A diagnostic analysis of the Reynolds-averaged Navier–Stokes (RANS) equations in the unstable flow regime hints at a competition between the radial and axial turbulent transport terms which act as generating and destructing agents for the azimuthal mean flow, respectively. We show that the balance of both terms depends on the wall inclination, that is, on the wall-tangential component of the Coriolis force.


Sign in / Sign up

Export Citation Format

Share Document