Fundamental and subharmonic secondary instabilities of Görtler vortices

1995 ◽  
Vol 297 ◽  
pp. 77-100 ◽  
Author(s):  
Fei Li ◽  
Mujeeb R. Malik

The nonlinear development of stationary Görtler vortices leads to a highly distorted mean flow field where the streamwise velocity depends strongly not only on the wall-normal but also on the spanwise coordinates. In this paper, the inviscid instability of this flow field is analysed by solving the two-dimensional eigenvalue problem associated with the governing partial differential equation. It is found that the flow field is subject to the fundamental odd and even (with respect to the Görtler vortex) unstable modes. The odd mode, which was also found by Hall & Horseman (1991), is initially more unstable. However, there exists an even mode which has higher growth rate further downstream. It is shown that the relative significance of these two modes depends upon the Görtler vortex wavelength such that the even mode is stronger for large wavelengths while the odd mode is stronger for short wavelengths. Our analysis also shows the existence of new subharmonic (both odd and even) modes of secondary instability. The nonlinear development of the fundamental secondary instability modes is studied by solving the (viscous) partial differential equations under a parabolizing approximation. The odd mode leads to the well-known sinuous mode of break down while the even mode leads to the horseshoe-type vortex structure. This helps explain experimental observations that Görtler vortices break down sometimes by sinuous motion and sometimes by developing a horseshoe vortex structure. The details of these break down mechanisms are presented.

The fully nonlinear development of small-wavelength Görtler vortices in a growing boundary layer is investigated by a combination of asymptotic and numerical methods. The starting point for the analysis is the weakly nonlinear theory of Hall ( J. Inst. Math. Applies 29, 173 (1982)) who discussed the initial development of large-wavenumber small-amplitude vortices in a neighbourhood of the location where they first become linearly unstable. That development is unusual in the context of nonlinear stability theory in that it is not described by the Stuart-Watson approach. In fact, the development is governed by a pair of coupled nonlinear partial differential evolution equations for the vortex flow and the mean flow correction. Here the further development of this interaction is considered for vortices so large that the mean flow correction driven by them is as large as the basic state. Surprisingly it is found that such a nonlinear interaction can still be described by asymptotic means. It is shown that the vortices spread out across the boundary layer and effectively drive the boundary layer. In fact, the system obtained by the equations for the fundamental component of the vortex generates a differential equation for the basic state. Thus the mean flow adjusts so as to make these large amplitude vortices locally neutral. Moreover in the region where the vortices exist the mean flow has a ‘square-root’ profile and the vortex velocity field can be written down in closed form. The upper and lower boundaries of the region of vortex activity are determined by a free-boundary problem involving the boundary-layer equations. In general it is found that this region ultimately includes almost all of the original boundary layer and much of the free stream. In this situation the mean flow has essentially no relation to the flow that exists in the absence of the vortices.


2017 ◽  
Vol 829 ◽  
pp. 681-730 ◽  
Author(s):  
Dongdong Xu ◽  
Yongming Zhang ◽  
Xuesong Wu

We study the nonlinear development and secondary instability of steady and unsteady Görtler vortices which are excited by free-stream vortical disturbances (FSVD) in a boundary layer over a concave wall. The focus is on low-frequency (long-wavelength) components of FSVD, to which the boundary layer is most receptive. For simplification, FSVD are modelled by a pair of oblique modes with opposite spanwise wavenumbers $\pm k_{3}$, and their intensity is strong enough (but still of low level) that the excitation and evolution of Görtler vortices are nonlinear. For the general case that the Görtler number $G_{\unicode[STIX]{x1D6EC}}$ (based on the spanwise wavelength $\unicode[STIX]{x1D6EC}$ of the disturbances) is $O(1)$, the formation and evolution of Görtler vortices are governed by the nonlinear unsteady boundary-region equations, supplemented by appropriate upstream and far-field boundary conditions, which characterize the impact of FSVD on the boundary layer. This initial-boundary-value problem is solved numerically. FSVD excite steady and unsteady Görtler vortices, which undergo non-modal growth, modal growth and nonlinear saturation for FSVD of moderate intensity. However, for sufficiently strong FSVD the modal stage is bypassed. Nonlinear interactions cause Görtler vortices to saturate, with the saturated amplitude being independent of FSVD intensity when $G_{\unicode[STIX]{x1D6EC}}\neq 0$. The predicted modified mean-flow profiles and structure of Görtler vortices are in excellent agreement with several steady experimental measurements. As the frequency increases, the nonlinearly generated harmonic component $(0,2)$ (which has zero frequency and wavenumber $2k_{3}$) becomes larger, and as a result the Görtler vortices appear almost steady. The secondary instability analysis indicates that Görtler vortices become inviscidly unstable in the presence of FSVD with a high enough intensity. Three types of inviscid unstable modes, referred to as sinuous (odd) modes I, II and varicose (even) modes I, are identified, and their relevance is delineated. The characteristics of dominant unstable modes, including their frequency ranges and eigenfunctions, are in good agreement with experiments. The secondary instability is intermittent when FSVD are unsteady and of low frequency. However, the intermittence diminishes as the frequency increases. The present theoretical framework, which allows for a detailed and integrated description of the key transition processes, from generation, through linear and nonlinear evolution, to the onset of secondary instability, represents a useful step towards predicting the pre-transitional flow and transition itself of the boundary layer over a blade in turbomachinery.


2010 ◽  
Vol 17 (4) ◽  
pp. 455-481 ◽  
Author(s):  
A. V. Boiko ◽  
A. V. Ivanov ◽  
Yu. S. Kachanov ◽  
D. A. Mischenko

1996 ◽  
Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6%) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5×105 and was completed by 4.7×105. The transition was strongly influenced by the presence of stationary, streamwise, Görtler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex, and five spanwise locations relative to a Görtler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex, but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Görtler vortices in otherwise 2-D flows. Because these cases were run with a low value of free-stream turbulence intensity, the flow is not a replication of a gas turbine flow. However, the results do provide a base case for further work on transition on the pressure side of gas turbine airfoils, where concave curvature effects are combined with the effects of high free-stream turbulence and strong streamwise pressure gradients, for they show the effects of embedded streamwise vorticity in a flow that is free of high-turbulence effects.


2008 ◽  
Vol 20 (9) ◽  
pp. 094103 ◽  
Author(s):  
Tandiono ◽  
S. H. Winoto ◽  
D. A. Shah

Sign in / Sign up

Export Citation Format

Share Document