scholarly journals Boundary element methods for particles and microswimmers in a linear viscoelastic fluid

2017 ◽  
Vol 831 ◽  
pp. 228-251 ◽  
Author(s):  
Kenta Ishimoto ◽  
Eamonn A. Gaffney

The consideration of viscoelasticity within fluid dynamical boundary element methods has traditionally required meshing over the whole flow domain. In turn, a major advantage of the boundary element method is lost, namely the need to consider only surface boundary integrals. Here, using a generalised reciprocal relation and viscoelastic force singularities, a boundary element method is developed for linear viscoelastic flows. We proceed to explore finite-deformation microswimming in a linear Maxwell fluid. We firstly deduce a finite-amplitude generalisation of a previously reported result that the flow field is unchanged between a Newtonian and linear Maxwell fluid for prescribed small-amplitude deformations. Hence Purcell’s theorem holds for a linear Maxwell fluid. We proceed to consider deformation swimming in a linear Maxwell fluid given an external forcing. Boundary scattering trajectories for an exemplar squirmer approaching a surface are observed to exhibit a weak dependence on the Deborah number, while the trajectories of a sperm and monotrichous bacterium near a surface are predicted to be essentially unaffected at moderate Deborah number. In turn, the latter supports the common simplification of using Newtonian Stokes flows for studying flagellate swimming in linear Maxwell media. In addition, the motion of a magnetic helix under the influence of an external magnetic field is considered, and highlights that linear viscoelasticity can significantly impact the propagation of the helix, in turn demonstrating that even linear rheology is important to consider for forced swimmers. Finally, the presented framework requires minimalistic adjustments to Newtonian boundary element codes, enabling rapid implementation, and is more generally applicable, for instance to studies of particle interactions in active linear rheology on the microscale.

1991 ◽  
Vol 23 (1-3) ◽  
pp. 517-524
Author(s):  
M. Kanoh ◽  
T. Kuroki ◽  
K. Fujino ◽  
T. Ueda

The purpose of the paper is to apply two methods to groundwater pollution in porous media. The methods are the weighted finite difference method and the boundary element method, which were proposed or developed by Kanoh et al. (1986,1988) for advective diffusion problems. Numerical modeling of groundwater pollution is also investigated in this paper. By subdividing the domain into subdomains, the nonlinearity is localized to a small region. Computational time for groundwater pollution problems can be saved by the boundary element method; accurate numerical results can be obtained by the weighted finite difference method. The computational solutions to the problem of seawater intrusion into coastal aquifers are compared with experimental results.


1994 ◽  
Vol 61 (2) ◽  
pp. 264-269 ◽  
Author(s):  
A. Nagarajan ◽  
E. Lutz ◽  
S. Mukherjee

This paper presents a novel application of the boundary element method to solve problems in linear elasticity. The new method is called the Boundary Contour Method. This approach requires no numerical integration at all for two-dimensional problems and numerical evaluation of line integrals only for three-dimensional problems; even for curved line or surface boundary elements of arbitrary shape! Numerical results are presented for some two-dimensional problems.


1994 ◽  
Vol 02 (04) ◽  
pp. 423-439
Author(s):  
RICHARD PAUL SHAW ◽  
PAUL VAN SLOOTEN ◽  
MATTHEW NOBILE

A boundary element method (BEM) approach is used to solve the acoustic problem of a point source within an enclosure with a large opening to an infinite (without a baffle) or semi-infinite (with a baffle) acoustic space. Emphasis is placed on 2D models with the source located along the center line of three types of geometries: a wedge, a parabola, and a rectangular enclosure.


2014 ◽  
Vol 553 ◽  
pp. 495-500 ◽  
Author(s):  
Benjamin Marussig ◽  
Gernot Beer ◽  
Christian Duenser

Isogeometric finite element methods and more recently boundary element methods have been successfully applied to problems in mechanical engineering and have led to an increased accuracy and a reduction in simulation effort. Isogeometric boundary element methods have great potential for the simulation of problems in geomechanics, especially tunneling because an infinite domain can be considered without truncation. In this paper we discuss the implementation of the method in the research software BEFE++. Based on an example of a spherical excavation we show that a significant reduction in the number of parameters for describing the excavation boundary as well as an improved quality of the results can be obtained.


2019 ◽  
Vol 26 (2) ◽  
pp. 198-211
Author(s):  
Jiaye Gong ◽  
Yunbo Li

Abstract Based on the potential flow theory and traditional boundary element method (BEM), Taylor expansion boundary element method (TEBEM) is introduced in this paper for the prediction of the flow field around ship, as a result, hull gesture and pressure distribution on hull surface are obtained. By this method, dipole strength of every field point is expanded in Taylor expansion, so that approximately continuous hull and free surface boundary condition could be achieved. To close the new equation system, the boundary condition of tangent velocity in every control point is introduced. With the simultaneous solving of hull boundary condition and free surface condition, the disturbance velocity potential could be obtained. The present method is used to predict the flow field and hull gesture of Wigley parabolic hull, Series 60 and KVLCC2 models. To validate the numerical model for full form ship, the wave profile, the computed hull gesture and hull surface pressure of KVLCC2 model are compared with experimental results.


2015 ◽  
Author(s):  
Amanda J. Costa ◽  
Daniel Kowalyshyn ◽  
Kevin Tuil ◽  
Yin Lu Young ◽  
William Milewski ◽  
...  

This paper presents the results of hydrofoil simulations at varying depths below the free surface, in surface piercing conditions, and integrated with ship hulls. It focuses on the influence of the free surface on the hydrodynamic loads, susceptibility to cavitation, and resulting surface wave patterns. A fast, high-order, NURBS (Non Uniform Rational B-Spline) based boundary element method has been developed that includes both free surface boundary conditions and steady and unsteady iterative pressure Kutta conditions for simulating lift. Results from this method will be compared to published experimental results, analytical solutions based on linear potential theory, and numerical results from viscous simulations obtained using the commercial CFD solver, ANSYS CFX.


Sign in / Sign up

Export Citation Format

Share Document