scholarly journals Time evolution of uniform momentum zones in a turbulent boundary layer

2018 ◽  
Vol 842 ◽  
pp. 554-590 ◽  
Author(s):  
A. Laskari ◽  
R. de Kat ◽  
R. J. Hearst ◽  
B. Ganapathisubramani

Time-resolved planar particle image velocimetry was used to analyse the structuring of a turbulent boundary layer into uniform momentum zones (UMZs). The instantaneous peak-detection method employed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, pp. 1–54) and de Silva et al. (J. Fluid Mech., vol. 786, 2016, pp. 309–331) is extended to account for temporal coherence of UMZs. The resulting number of zones detected appears to follow a normal distribution at any given instant. However, the extreme cases in which the number of zones is either very high or very low, are shown to be linked with two distinct flow states. A higher than average number of zones is associated with a large-scale $Q2$ event in the log region which creates increased small-scale activity within that region. Conversely, a low number of zones corresponds to a large-scale $Q4$ event in the log region and decreased turbulent activity away from the wall. The residence times, within the measurement plane, of zones belonging to the latter scenario are shown to be on average four times larger than those of zones present during higher than average zone structuring states. For both cases, greater residence times are observed for zones of higher momentum that are generally closer to the free stream.

The viscosity-dominated unsteady flow in a row of small transverse square cavities lying submerged in a turbulent boundary layer is first considered. Experiments performed primarily with one size of cavities show that the cavity flow can be excited by freestream disturbances in a narrow frequency band that is independent of the flow speed. The turbulent boundary layer in which the cavities are submerged remains transparent to the disturbances. The cavity flow resonates when the depths of the cavity and the Stokes layer are nearly the same, that is when 2π fk 2 / v = 1, where f is the frequency of the resonant cavity flow, k is the cavity height and v is the kinematic viscosity of the fluid. An associated laminar boundary-layer excitation experiment shows that the instability process over the grooved surface also involves the amplification of Tollmien–Schlichting (T–S) waves in much the same manner as in a smooth-wall Blasius profile but the grooves enhance receptivity. A theory is given proposing that the resonant groove flow in the low Reynolds number turbulent boundary layer is driven by highly amplified matched T–S waves. The possible relevance of the observed coupling between the large-scale freestream disturbances and the small-scale cavity flows to the turbulence production mechanism in a smooth flat-plate turbulent boundary layer is also discussed.


2013 ◽  
Vol 731 ◽  
Author(s):  
Grégoire Lemoult ◽  
Jean-Luc Aider ◽  
José Eduardo Wesfreid

AbstractUsing a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


2015 ◽  
Vol 767 ◽  
Author(s):  
Subrahmanyam Duvvuri ◽  
Beverley J. McKeon

AbstractA formal relationship between the skewness and the correlation coefficient of large and small scales, termed the amplitude modulation coefficient, is established for a general statistically stationary signal and is analysed in the context of a turbulent velocity signal. Both the quantities are seen to be measures of phase in triadically consistent interactions between scales of turbulence. The naturally existing phase relationships between large and small scales in a turbulent boundary layer are then manipulated by exciting a synthetic large-scale motion in the flow using a spatially impulsive dynamic wall roughness perturbation. The synthetic scale is seen to alter the phase relationships, or the degree of modulation, in a quasi-deterministic manner by exhibiting a phase-organizing influence on the small scales. The results presented provide encouragement for the development of a practical framework for favourable manipulation of energetic small-scale turbulence through large-scale inputs in a wall-bounded turbulent flow.


1997 ◽  
Vol 342 ◽  
pp. 263-293 ◽  
Author(s):  
H. S. SHAFI ◽  
R. A. ANTONIA

Measurements of the spanwise and wall-normal components of vorticity and their constituent velocity derivative fluctuations have been made in a turbulent boundary layer over a mesh-screen rough wall using a four-hot-wire vorticity probe. The measured spectra and variances of vorticity and velocity derivatives have been corrected for the effect of spatial resolution. The high-wavenumber behaviour of the spectra conforms closely with isotropy. Over most of the outer layer, the normalized magnitudes of the velocity derivative variances differ significantly from those over a smooth wall layer. The differences are such that the variances are much more nearly isotropic over the rough wall than on the smooth wall. This behaviour is consistent with earlier observations that the large-scale structure in this rough wall layer is more isotropic than that in a smooth wall layer. Isotropy-based approximations for the mean energy dissipation rate and mean enstrophy are consequently more reliable in this rough wall layer than in a smooth wall layer. In the outer layer, the vorticity variances are slightly larger than those over a smooth wall; reflecting structural differences between the two flows.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 286
Author(s):  
Shaurya Shrivastava ◽  
Theresa Saxton-Fox

The preferential organisation of coherent vortices in a turbulent boundary layer in relation to local large-scale streamwise velocity features was investigated. Coherent vortices were identified in the wake region using the Triple Decomposition Method (originally proposed by Kolář) from 2D particle image velocimetry (PIV) data of a canonical turbulent boundary layer. Two different approaches, based on conditional averaging and quantitative statistical analysis, were used to analyze the data. The large-scale streamwise velocity field was first conditionally averaged on the height of the detected coherent vortices and a change in the sign of the average large scale streamwise fluctuating velocity was seen depending on the height of the vortex core. A correlation coefficient was then defined to quantify this relationship between the height of coherent vortices and local large-scale streamwise fluctuating velocity. Both of these results indicated a strong negative correlation in the wake region of the boundary layer between vortex height and large-scale velocity. The relationship between vortex height and full large-scale velocity isocontours was also studied and a conceptual model based on the findings of the study was proposed. The results served to relate the hairpin vortex model of Adrian et al. to the scale interaction results reported by Mathis et al., and Chung and McKeon.


2018 ◽  
Vol 844 ◽  
pp. 635-668 ◽  
Author(s):  
Sichao Deng ◽  
Chong Pan ◽  
Jinjun Wang ◽  
Guosheng He

The present study is devoted to characterizing the coherent organization of vortical structures, which can be fitted into the paradigm of the hairpin-packet model, in the streamwise–wall-normal plane of a canonical turbulent boundary layer at $Re_{\unicode[STIX]{x1D70F}}=377{-}1093$. Proper orthogonal decomposition (POD) of the planar velocity fields measured via two-dimensional particle image velocimetry, together with a spatio-temporal coherence analysis, shows that the first four leading-order POD modes share both geometric similarity and dynamic coherence and jointly depict the downstream convection of the large-scale Q2/Q4 events, which can be regarded as the low-order imprints of the hairpin packets. A simple low-order indicator is then proposed to extract the inclined interfaces of the hairpin packets, based on which a two-point conditional correlation analysis forms a statistical picture of the spatial organization of multiple prograde vortices aligned along the interface within one packet. A saturation of the self-similar growth of the streamwise gap between two neighbouring vortices is seen. This implies a detachment of the hairpin packets from the inner layer. Both the detachment height and the saturated streamwise spacing are found to scale as $Re_{\unicode[STIX]{x1D70F}}^{1/2}$.


2011 ◽  
Vol 673 ◽  
pp. 218-244 ◽  
Author(s):  
DAVID J. C. DENNIS ◽  
TIMOTHY B. NICKELS

Three-dimensional (3D) measurements of a turbulent boundary layer have been made using high-speed particle image velocimetry (PIV) coupled with Taylor's hypothesis, with the objective of characterising the very long streamwise structures that have been observed previously. The measurements show the 3D character of both low- and high-speed structures over very long volumes. The statistics of these structures are considered, as is their relationship to the important turbulence quantities. In particular, the length of the structures and their wall-normal extent have been considered and their relationship to the other components of the velocity fluctuations and the instantaneous stress.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 24 ◽  
Author(s):  
Wenkang Wang ◽  
Chong Pan ◽  
Jinjun Wang

Low-speed streaks in wall-bounded turbulence are the dominant structures in the near-wall turbulent self-sustaining cycle. Existing studies have well characterized their spanwise spacing in the buffer layer and below. Recent studies suggested the existence of these small-scale structures in the higher layer where large-scale structures usually receive more attention. The present study is thus devoted to extending the understanding of the streak spacing to the log layer. An analysis is taken on two-dimensional (2D) wall-parallel velocity fields in a smooth-wall turbulent boundary layer with Ret = 4402400, obtained via either 2D Particle Image Velocimetry (PIV) measurement taken here or public Direct Numerical Simulation (DNS). Morphological-based streak identification analysis yields a Re-independent log-normal distribution of the streak spacing till the upper bound of the log layer, based on which an empirical model is proposed to account for its wall-normal growth. The small-scale part of the spanwise spectra of the streamwise fluctuating velocity below y? = 100 is reasonably restored by a synthetic simulation that distributes elementary streak units based on the proposed empirical streak spacing model, which highlights the physical significance of streaks in shaping the small-scale part of the velocity spectra beyond the buffer layer.


Sign in / Sign up

Export Citation Format

Share Document