Onset of transition in the flow of polymer solutions through microtubes

2018 ◽  
Vol 844 ◽  
pp. 1052-1083 ◽  
Author(s):  
Bidhan Chandra ◽  
V. Shankar ◽  
Debopam Das

Experiments are performed to characterize the onset of laminar–turbulent transition in the flow of high-molecular-weight polymer solutions in rigid microtubes of diameters in the range $390~\unicode[STIX]{x03BC}\text{m}{-}470~\unicode[STIX]{x03BC}\text{m}$ using the micro-PIV technique. By considering flow in tubes of such small diameters, the present study probes higher values of elasticity numbers ($E\equiv \unicode[STIX]{x1D706}\unicode[STIX]{x1D708}/R^{2}$) compared to existing studies, where $\unicode[STIX]{x1D706}$ is the longest relaxation time of the polymer solution, $R$ is the tube radius and $\unicode[STIX]{x1D708}$ is the kinematic viscosity of the polymer solution. For the Newtonian case, our experiments indicate that the natural transition (without the aid of any forcing mechanism) occurs at Reynolds number ($Re$) $2000\pm 100$. As the concentration of polymer is increased, initially there is a delay in the onset of the transition and the transition Reynolds number increases to $2500$. Further increase in concentration of the polymer results in a decrease in the Reynolds number for transition. At sufficiently high concentrations, the added polymer tends to destabilize the flow and the transition is observed to happen at $Re$ as low as $800$. It is also observed that the addition of polymers, regardless of their concentration, reduces the magnitude of the velocity fluctuations after transition. Dye-stream visualization is further used to corroborate the onset of transition in the flow of polymer solutions. The present work thus shows that addition of polymer, at sufficiently high concentrations, destabilizes the flow when compared to that of a Newtonian fluid, thereby providing additional evidence for ‘early transition’ or ‘elasto-inertial turbulence’ in the flow of polymer solutions. The data for the transition Reynolds number $Re_{t}$ from our experiments (for tubes of different diameters, and for two different polymers at varying concentrations) collapse well according to the scaling relation $Re_{t}\propto 1/\sqrt{E(1-\unicode[STIX]{x1D6FD})}$, where $\unicode[STIX]{x1D6FD}$ is the ratio of solvent viscosity to the viscosity of the polymer solution.

1970 ◽  
Vol 10 (02) ◽  
pp. 111-118 ◽  
Author(s):  
A. Herbert Harvey ◽  
D.E. Menzie

Abstract A method is described for the analysis of rate-dependent effects in the flow of polymer solutions through unconsolidated porous media. Experimental data are presented for solutions of polyacrylamide, polyethylene oxide, and polyacrylamide, polyethylene oxide, and polysaccharide. polysaccharide Introduction A major obstacle to wider use of polymer flooding seems to be the lack of a satisfactory method for predicting the performance of this oil recovery predicting the performance of this oil recovery process. Although it is frequently possible to process. Although it is frequently possible to predict that a polymer flood would recover more oil predict that a polymer flood would recover more oil from a reservoir than could be produced with a waterflood, it is difficult to make a realistic economic comparison of the two processes. Waterflood prediction techniques which consider areal sweep and reservoir stratification have been used to evaluate the effect of improved mobility ratio on oil recovery. If accurate relative permeability data are available and if stratigraphic permeability data are available and if stratigraphic variations in the reservoir are known, then these prediction techniques may lead to a rough prediction techniques may lead to a rough approximation of the performance of a polymer flood. However, such prediction techniques fail to consider that the apparent flow resistance to a polymer solution depends on flow velocity as well polymer solution depends on flow velocity as well as permeability. These rate-dependent effects may be significant in a pattern flood, since fluid velocity is not constant. They may also be significant in a heterogeneous reservoir. Under favorable conditions some rate-dependent fluids will tend to even out the flood front in a stratified reservoir and thereby increase oil recovery. This effect cannot be anticipated with conventional waterflood prediction techniques. The basis for much of the difficulty in predicting the performance of a polymer flood is a lack of understanding of the behavior of high molecular weight polymer solutions flowing through porous materials. Until we are able to predict how these solutions will flow through a simple system such as a glass bead pack, it seems unlikely that we will be able to develop a realistic mathematical model to describe the much more complex problem of flow in an oil reservoir. It is the purpose of this study to develop a method for investigating the flow of these high molecular weight polymer solutions through unconsolidated porous media and to study the rheologic properties of solutions of certain polymers which, are of interest from the standpoint of possible application to polymer flooding. EQUATIONS DESCRIBING NON-NEWTONIAN FLOW IN POROUS MEDIA In analogy to the Blake-Kozeny equation for Newtonian fluids, equations have been developed to describe the flow of certain non-Newtonian fluids through porous media. These relationships are based on the assumptions that the fluid behavior may be approximated by the "power law" (Ostwaldde Waele flow model) and that the hydraulic radius concept is applicable to the porous media. If we write the power (1) lawmr  =  m y , and let N = Reynolds number for porous mediaRe f* = friction factor for porous media W = mass velocity dp = particle diameter of porous media 0 = porosity p = fluid density, the relationships may be written (2)L 2 1-0W d 3* pd pf  = (3)NRE * 1f  =  ----- , SPEJ P. 111


2004 ◽  
Author(s):  
Kalonji K. Kabanemi ◽  
Jean-Franc¸ois He´tu ◽  
Samira H. Sammoun

An experimental investigation of the flow behavior of dilute, semi-dilute and concentrated polymer solutions has been carried out to gain a better understanding of the underlying mechanisms leading to the occurrence of instabilities at the advancing flow front during the filling of a mold cavity. Experiments were performed using various mass concentrations of low and high molecular weight polyacrylamide polymers in corn syrup and water. This paper reports a new type of elastic fingering instabilities at the advancing flow front that has been observed only in semi-dilute polymer solutions of high molecular weight polymers. These flow front elastic instabilities seem to arise as a result of a mixture of widely separated high molecular weight polymer molecules and low molecular weight solvent molecules, which gives rise to a largely non-uniform polydisperse solution, with respect to all the kinds of molecules in the resulting mixture (solvent molecules and polymer molecules). The occurrence of these instabilities appears to be independent of the injection flow rate and the cavity thickness. Moreover, these instabilities do not manifest themselves in dilute or concentrated regimes, where respectively, polymer molecules and solvent molecules are minor perturbation of the resulting solution. In those regimes, smooth flow fronts are confirmed from our experiments. Based on these findings, the experimental investigations have been extended to polymer melts. Different mixtures of polycarbonate melts of widely separated molecular weights (low and high molecular weights) were first prepared. The effect of the large polydispersity of the resulting mixtures on the flow front behavior was subsequently studied. The same instabilities at the flow front were observed only in the experiments where a very small amount of high molecular weight polycarbonate polymer has been mixed to a low molecular weight polycarbonate melt (oligomers).


1998 ◽  
Vol 377 ◽  
pp. 267-312 ◽  
Author(s):  
A. A. DRAAD ◽  
G. D. C. KUIKEN ◽  
F. T. M. NIEUWSTADT

A cylindrical pipe facility with a length of 32 m and a diameter of 40 mm has been designed. The natural transition Reynolds number, i.e. the Reynolds number at which transition occurs as a result of non-forced, natural disturbances, is approximately 60 000. In this facility we have studied the stability of cylindrical pipe flow to imposed disturbances. The disturbance consists of periodic suction and injection of fluid from a slit over the whole circumference in the pipe wall. The injection and suction are equal in magnitude and each distributed over half the circumference so that the disturbance is divergence free. The amplitude and frequency can be varied over a wide range.First, we consider a Newtonian fluid, water in our case. From the observations we compute the critical disturbance velocity, which is the smallest disturbance at a given Reynolds number for which transition occurs. For large wavenumbers, i.e. large frequencies, the dimensionless critical disturbance velocity scales according to Re−1, while for small wavenumbers, i.e. small frequencies, it scales as Re−2/3. The latter is in agreement with weak nonlinear stability theory. For Reynolds numbers above 30 000 multiple transition points are found which means that increasing the disturbance velocity at constant dimensionless wavenumber leads to the following course of events. First, the flow changes from laminar to turbulent at the critical disturbance velocity; subsequently at a higher value of the disturbance it returns back to laminar and at still larger disturbance velocities the flow again becomes turbulent.Secondly, we have carried out stability measurements for (non-Newtonian) dilute polymer solutions. The results show that the polymers reduce in general the natural transition Reynolds number. The cause of this reduction remains unclear, but a possible explanation may be related to a destabilizing effect of the elasticity on the developing boundary layers in the entry region of the flow. At the same time the polymers have a stabilizing effect with respect to the forced disturbances, namely the critical disturbance velocity for the polymer solutions is larger than for water. The stabilization is stronger for fresh polymer solutions and it is also larger when the polymers adopt a more extended conformation. A delay in transition has been only found for extended fresh polymers where delay means an increase of the critical Reynolds number, i.e. the number below which the flow remains laminar at any imposed disturbance.


2012 ◽  
Vol 535-537 ◽  
pp. 1189-1192 ◽  
Author(s):  
Ji Gang Wang ◽  
Peng Wu ◽  
Quan Qing Du ◽  
Hui Hui Cao ◽  
Meng Sun

Abstract: When the dose level of polymer is settled, the change of injection volume and concentration do not increase oil recovery obviously, while the result of lab research shows that the increasing of oil recovery of high concentration and high molecular weight polymer flooding can reach or over that of ASP flooding. The aim of this paper is to study the shear characteristic in high concentration and high molecular weight polymer flooding, and analyzed the suitable parameter of it.They can provide the theory of high concentration Polymer flooding. In the process of polymer flooding, it was because increasing the water phase viscosit and the retention effect of polymer molecules in porous media that making oil flow degrees than improved ,the sweep volume expand, and improve the oil recovery. Study confirmed [1-3], polymer solution with sticky elastic can effectively improve the oil displacement efficiency, reduce residual oil saturation [4-5]. So, the study on the shear properties of the polymer system in high concentration (>1000mg/L) can provide experimental base for a high concentration of polymer flooding, it also has important significance on theory of polymer flooding development and application research.


Sign in / Sign up

Export Citation Format

Share Document