scholarly journals Energy dissipation caused by boundary layer instability at vanishing viscosity

2018 ◽  
Vol 849 ◽  
pp. 676-717 ◽  
Author(s):  
Natacha Nguyen van yen ◽  
Matthias Waidmann ◽  
Rupert Klein ◽  
Marie Farge ◽  
Kai Schneider

A qualitative explanation for the scaling of energy dissipation by high-Reynolds-number fluid flows in contact with solid obstacles is proposed in the light of recent mathematical and numerical results. Asymptotic analysis suggests that it is governed by a fast, small-scale Rayleigh–Tollmien–Schlichting instability with an unstable range whose lower and upper bounds scale as$Re^{3/8}$and$Re^{1/2}$, respectively. By linear superposition, the unstable modes induce a boundary vorticity flux of order$Re^{1}$, a key ingredient in detachment and drag generation according to a theorem of Kato. These predictions are confirmed by numerically solving the Navier–Stokes equations in a two-dimensional periodic channel discretized using compact finite differences in the wall-normal direction, and a spectral scheme in the wall-parallel direction.

2016 ◽  
Vol 792 ◽  
pp. 499-525 ◽  
Author(s):  
Hui Xu ◽  
Spencer J. Sherwin ◽  
Philip Hall ◽  
Xuesong Wu

This paper is concerned with the behaviour of Tollmien–Schlichting (TS) waves experiencing small localised distortions within an incompressible boundary layer developing over a flat plate. In particular, the distortion is produced by an isolated roughness element located at $\mathit{Re}_{x_{c}}=440\,000$. We considered the amplification of an incoming TS wave governed by the two-dimensional linearised Navier–Stokes equations, where the base flow is obtained from the two-dimensional nonlinear Navier–Stokes equations. We compare these solutions with asymptotic analyses which assume a linearised triple-deck theory for the base flow and determine the validity of this theory in terms of the height of the small-scale humps/indentations taken into account. The height of the humps/indentations is denoted by $h$, which is considered to be less than or equal to $x_{c}\mathit{Re}_{x_{c}}^{-5/8}$ (corresponding to $h/{\it\delta}_{99}<6\,\%$ for our choice of $\mathit{Re}_{x_{c}}$). The rescaled width $\hat{d}~(\equiv d/(x_{c}\mathit{Re}_{x_{c}}^{-3/8}))$ of the distortion is of order $\mathit{O}(1)$ and the width $d$ is shorter than the TS wavelength (${\it\lambda}_{TS}=11.3{\it\delta}_{99}$). We observe that, for distortions which are smaller than 0.1 of the inner deck height ($h/{\it\delta}_{99}<0.4\,\%$), the numerical simulations confirm the asymptotic theory in the vicinity of the distortion. For larger distortions which are still within the inner deck ($0.4\,\%<h/{\it\delta}_{99}<5.5\,\%$) and where the flow is still attached, the numerical solutions show that both humps and indentations are destabilising and deviate from the linear theory even in the vicinity of the distortion. We numerically determine the transmission coefficient which provides the relative amplification of the TS wave over the distortion as compared to the flat plate. We observe that for small distortions, $h/{\it\delta}_{99}<5.5\,\%$, where the width of the distortion is of the order of the boundary layer, a maximum amplification of only 2 % is achieved. This amplification can however be increased as the width of the distortion is increased or if multiple distortions are present. Increasing the height of the distortion so that the flow separates ($7.2\,\%<h/{\it\delta}_{99}<12.8\,\%$) leads to a substantial increase in the transmission coefficient of the hump up to 350 %.


2011 ◽  
Vol 690 ◽  
pp. 288-320 ◽  
Author(s):  
P. Orlandi ◽  
S. Pirozzoli ◽  
G. F. Carnevale

AbstractWe present high-resolution numerical simulations of the Euler and Navier–Stokes equations for a pair of colliding dipoles. We study the possible approach to a finite-time singularity for the Euler equations, and contrast it with the formation of developed turbulence for the Navier–Stokes equations. We present numerical evidence that seems to suggest the existence of a blow-up of the inviscid velocity field at a finite time (${t}_{s} $) with scaling $\vert u\vert _{\infty } \ensuremath{\sim} \mathop{ ({t}_{s} \ensuremath{-} t)}\nolimits ^{\ensuremath{-} 1/ 2} $, $\vert \omega \vert _{\infty } \ensuremath{\sim} \mathop{ ({t}_{s} \ensuremath{-} t)}\nolimits ^{\ensuremath{-} 1} $. This blow-up is associated with the formation of a ${k}^{\ensuremath{-} 3} $ spectral range, at least for the finite range of wavenumbers that are resolved by our computation. In the evolution toward ${t}_{s} $, the total enstrophy is observed to increase at a slower rate, $\Omega \ensuremath{\sim} \mathop{ ({t}_{s} \ensuremath{-} t)}\nolimits ^{\ensuremath{-} 3/ 4} $, than would naively be expected given the behaviour of the maximum vorticity, ${\omega }_{\infty } \ensuremath{\sim} \mathop{ ({t}_{s} \ensuremath{-} t)}\nolimits ^{\ensuremath{-} 1} $. This indicates that the blow-up would be concentrated in narrow regions of the flow field. We show that these regions have sheet-like structure. Viscous simulations, performed at various $\mathit{Re}$, support the conclusion that any non-zero viscosity prevents blow-up in finite time and results in the formation of a dissipative exponential range in a time interval around the estimated inviscid ${t}_{s} $. In this case the total enstrophy saturates, and the energy spectrum becomes less steep, approaching ${k}^{\ensuremath{-} 5/ 3} $. The simulations show that the peak value of the enstrophy scales as ${\mathit{Re}}^{3/ 2} $, which is in accord with Kolmogorov phenomenology. During the short time interval leading to the formation of an inertial range, the total energy dissipation rate shows a clear tendency to become independent of $\mathit{Re}$, supporting the validity of Kolmogorov’s law of finite energy dissipation. At later times the kinetic energy shows a ${t}^{\ensuremath{-} 1. 2} $ decay for all $\mathit{Re}$, in agreement with experimental results for grid turbulence. Visualization of the vortical structures associated with the stages of vorticity amplification and saturation show that, prior to ${t}_{s} $, large-scale and the small-scale vortical structures are well separated. This suggests that, during this stage, the energy transfer mechanism is non-local both in wavenumber and in physical space. On the other hand, as the spectrum becomes shallower and a ${k}^{\ensuremath{-} 5/ 3} $ range appears, the energy-containing eddies and the small-scale vortices tend to be concentrated in the same regions, and structures with a wide range of sizes are observed, suggesting that the formation of an inertial range is accompanied by transfer of energy that is local in both physical and spectral space.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Author(s):  
Carl E. Rathmann

For well over 150 years now, theoreticians and practitioners have been developing and teaching students easily visualized models of fluid behavior that distinguish between the laminar and turbulent fluid regimes. Because of an emphasis on applications, perhaps insufficient attention has been paid to actually understanding the mechanisms by which fluids transition between these regimes. Summarized in this paper is the product of four decades of research into the sources of these mechanisms, at least one of which is a direct consequence of the non-linear terms of the Navier-Stokes equation. A scheme utilizing chaotic dynamic effects that become dominant only for sufficiently high Reynolds numbers is explored. This paper is designed to be of interest to faculty in the engineering, chemistry, physics, biology and mathematics disciplines as well as to practitioners in these and related applications.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


1958 ◽  
Vol 8 ◽  
pp. 966-974
Author(s):  
H. E. Petschek

Analyses of aerodynamic dissipation in ordinary un-ionized gases are all based upon the Navier-Stokes equations. These equations relate the rate of dissipation to the local gradients in velocity and temperature through the viscosity and heat conduction coefficients. Although it is true that in many flow situations the magnitude of the total dissipation in the gas does not depend on the magnitude of the viscosity coefficient, this coefficient does determine the minimum scale of variations observed in the gas and the form of the Navier-Stokes equations determines the type of phenomena which are observed on a small scale. In order to discuss dissipation in an ionized gas in the presence of a magnetic field, it is therefore necessary to re-examine the derivation of the basic flow equations. This paper attempts to do this for a case of a completely ionized gas and demonstrates that the basic microscopic dissipation mechanism is appreciably different. For example, it is shown that the minimum length in which the properties of the flow field can change noticeably is appreciably less than one mean free path.


Sign in / Sign up

Export Citation Format

Share Document