Application of the minimum entropy production principle to shock reflection induced by separation

2018 ◽  
Vol 857 ◽  
pp. 784-805 ◽  
Author(s):  
Chengpeng Wang ◽  
Longsheng Xue ◽  
Keming Cheng

In this paper separation-induced shock reflection is studied theoretically and experimentally. An analytical model is proposed to establish the connections among upstream conditions, downstream conditions and shock configurations. Furthermore, the minimum entropy production principle is employed to determine the incident shock angles as well as the criterion for the transition from regular reflection to Mach reflection, which agrees well with experimental results. Additionally, a solution path for a reflected shock that fulfills the minimum entropy production principle is found in the overall regular reflection domain, based on which the steadiest shock configuration may be determined according to upstream and downstream conditions.

2004 ◽  
Vol 50 (170) ◽  
pp. 342-352 ◽  
Author(s):  
Perry Bartelt ◽  
Othmar Buser

AbstractAn essential problem in snow science is to predict the changing form of ice grains within a snow layer. Present theories are based on the idea that form changes are driven by mass diffusion induced by temperature gradients within the snow cover. This leads to the well-established theory of isothermal- and temperature-gradient metamorphism. Although diffusion theory treats mass transfer, it does not treat the influence of this mass transfer on the form — the curvature radius of the grains and bonds — directly. Empirical relations, based on observations, are additionally required to predict flat or rounded surfaces. In the following, we postulate that metamorphism, the change of ice surface curvature and size, is a process of thermodynamic optimization in which entropy production is minimized. That is, there exists an optimal surface curvature of the ice grains for a given thermodynamic state at which entropy production is stationary. This state is defined by differences in ice and air temperature and vapor pressure across the interfacial boundary layer. The optimal form corresponds to the state of least wasted work, the state of minimum entropy production. We show that temperature gradients produce a thermal non-equilibrium between the ice and air such that, depending on the temperature, flat surfaces are required to mimimize entropy production. When the temperatures of the ice and air are equal, larger curvature radii are found at low temperatures than at high temperatures. Thus, what is known as isothermal metamorphism corresponds to minimum entropy production at equilibrium temperatures, and so-called temperature-gradient metamorphism corresponds to minimum entropy production at none-quilibrium temperatures. The theory is in good agreement with general observations of crystal form development in dry seasonal alpine snow.


2019 ◽  
Vol 874 ◽  
pp. 131-157 ◽  
Author(s):  
A. Kluwick ◽  
E. A. Cox

The canonical problem of transonic dense gas flows past two-dimensional compression/expansion ramps has recently been investigated by Kluwick & Cox (J. Fluid Mech., vol. 848, 2018, pp. 756–787). Their results are for unconfined flows and have to be supplemented with solutions of another canonical problem dealing with the reflection of disturbances from an opposing wall to finally provide a realistic picture of flows in confined geometries of practical importance. Shock reflection in dense gases for transonic flows is the problem addressed in this paper. Analytical results are presented in terms of similarity parameters associated with the fundamental derivative of gas dynamics $(\unicode[STIX]{x1D6E4})$, its derivative with respect to the density at constant entropy $(\unicode[STIX]{x1D6EC})$ and the Mach number $(M)$ of the upstream flow. The richer complexity of flows scenarios possible beyond classical shock reflection is demonstrated. For example: incident shocks close to normal incidence on a reflecting boundary can lead to a compound shock–wave fan reflected flow or a pure wave fan flow as well as classical flow where a compressive reflected shock attached to the reflecting boundary is observed. With incident shock angles sufficiently away from normal incidence regular reflection becomes impossible and so-called irregular reflection occurs involving a detached reflection point where an incident shock, reflected shock and a Mach stem shock which remains connected to the boundary all intersect. This triple point intersection which also includes a wave fan is known as Guderley reflection. This classical result is demonstrated to carry over to the case of dense gases. It is then finally shown that the Mach stem formed may disintegrate into a compound shock–wave fan structure generating an additional secondary upstream shock. The aim of the present study is to provide insight into flows realised, for example, in wind tunnel experiments where evidence for non-classical gas dynamic effects such as rarefaction shocks is looked for. These have been predicted theoretically by the seminal work of Thompson (Phys. Fluids, vol. 14 (9), 1971, pp. 1843–1849) but have withstood experimental detection in shock tubes so far, due to, among others, difficulties to establish purely one-dimensional flows.


2020 ◽  
Vol 22 (13) ◽  
pp. 6993-7003 ◽  
Author(s):  
Marco Sauermoser ◽  
Signe Kjelstrup ◽  
Natalya Kizilova ◽  
Bruno G. Pollet ◽  
Eirik G. Flekkøy

We show how we can improve bio-inspired flow field patterns for use in PEMFCs by deviating from Murray's law.


Sign in / Sign up

Export Citation Format

Share Document