scholarly journals Rotating turbulent thermal convection at very large Rayleigh numbers

2021 ◽  
Vol 912 ◽  
Author(s):  
Marcel Wedi ◽  
Dennis P.M. van Gils ◽  
Eberhard Bodenschatz ◽  
Stephan Weiss

Abstract

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Daniel J. Keene ◽  
R. J. Goldstein

An experimental study of thermal convection in a porous medium investigates the heat transfer across a horizontal layer heated from below at high Rayleigh number. Using a packed bed of polypropylene spheres in a cubic enclosure saturated with compressed argon, the pressure was varied between 5.6 bar and 77 bar to obtain fluid Rayleigh numbers between 1.68 × 109 and 3.86 × 1011, corresponding to Rayleigh–Darcy numbers between 7.47 × 103 and 2.03 × 106. From the present and earlier studies of Rayleigh–Benard convection in both porous media and homogeneous fluid systems, the existence and importance of a thin thermal boundary layer are clearly demonstrated. In addition to identifying the governing role of the thermal boundary layer at high Rayleigh numbers, the successful correlation of data using homogeneous fluid dimensionless groups when the thermal boundary layer thickness becomes smaller than the length scale associated with the pore features is shown.


2001 ◽  
Vol 434 ◽  
pp. 1-21 ◽  
Author(s):  
C. LITHGOW-BERTELLONI ◽  
M. A. RICHARDS ◽  
C. P. CONRAD ◽  
R. W. GRIFFITHS

We study natural thermal convection of a fluid (corn syrup) with a large Prandtl number (103–107) and temperature-dependent viscosity. The experimental tank (1 × 1 × 0.3m) is heated from below with insulating top and side boundaries, so that the fluid experiences secular heating as experiments proceed. This setup allows a focused study of thermal plumes from the bottom boundary layer over a range of Rayleigh numbers relevant to convective plumes in the deep interior of the Earth's mantle. The effective value of Ra, based on the viscosity of the fluid at the interior temperature, varies from 105 at the beginning to almost 108 toward the end of the experiments. Thermals (plumes) from the lower boundary layer are trailed by continuous conduits with long residence times. Plumes dominate flow in the tank, although there is a weaker large-scale circulation induced by material cooling at the imperfectly insulating top and sidewalls. At large Ra convection is extremely time-dependent and exhibits episodic bursts of plumes, separated by periods of quiescence. This bursting behaviour probably results from the inability of the structure of the thermal boundary layer and its instabilities to keep pace with the rate of secular change in the value of Ra. The frequency of plumes increases and their size decreases with increasing Ra, and we characterize these changes via in situ thermocouple measurements, shadowgraph videos, and videos of liquid crystal films recorded during several experiments. A scaling analysis predicts observed changes in plume head and tail radii with increasing Ra. Since inertial effects are largely absent no transition to ‘hard’ thermal turbulence is observed, in contrast to a previous conclusion from numerical calculations at similar Rayleigh numbers. We suggest that bursting behaviour similar to that observed may occur in the Earth's mantle as it undergoes secular cooling on the billion-year time scale.


2005 ◽  
Vol 17 (12) ◽  
pp. 121701 ◽  
Author(s):  
G. Amati ◽  
K. Koal ◽  
F. Massaioli ◽  
K. R. Sreenivasan ◽  
R. Verzicco

1985 ◽  
Vol 6 ◽  
pp. 39-42 ◽  
Author(s):  
N. Klever

Heat and mass transport by an air and water-vapour mixture (pore air) in snow due to thermal convection has been computed. It can be shown theoretically that thermal convection is always occuring in newly fallen snow, but never occurs in snow with rounded grains. Rayleigh numbers of depth hoar and partly settled snow are close to the critical Rayleigh number, therefore a small change in one or more of the snow parameters will decide whether there is convective or conductive heat transport. The influence of thermal convection on the mass transport rates of water vapour in snow is computed based on the assumption of the ventilation approach. Although thermal convection occurs more often than previously assumed, its influence amounts only to about 2-3%.


1976 ◽  
Vol 73 (3) ◽  
pp. 445-451 ◽  
Author(s):  
Robert R. Long

A theory is developed for the dependence of the Nusselt number on the Rayleigh number in turbulent thermal convection in horizontal fluid layers. The theory is based on a number of assumptions regarding the behaviour in the molecular boundary layers and on the assumption of a buoyancy-defect law in the interior analogous to the velocity-defect law in flow in pipes and channels. The theory involves an unknown constant exponentsand two unknown functions of the Prandtl number. For eithers= ½ ors= 1/3, corresponding to two different theories of thermal convection, and for a given Prandtl number, constants can be chosen to give excellent agreement with existing data over nearly the whole explored range of Rayleigh numbers in the turbulent case. Unfortunately, comparisons with experiment do not permit a definite choice ofs, but consistency with the chosen form of the buoyancy-defect law seems to suggests= 1/3, corresponding to similarity theory.


1974 ◽  
Vol 27 (4) ◽  
pp. 481 ◽  
Author(s):  
R Van der Borght

Results are reported of an investigation into the effect of the chosen boundary conditions on the steady finite-amplitude convective motions in a layer in which the average energy flux is imposed. The boundary conditions are chosen with a view to the application of the results to solar granulation and supergranulation. It is shown that, at high Rayleigh numbers, solutions do in fact exist for which there is no modulation in the energy flux and little fluctuation in the temperature across the boundaries.


1980 ◽  
Vol 102 (3) ◽  
pp. 531-537 ◽  
Author(s):  
A. A. Emara ◽  
F. A. Kulacki

Finite difference solutions of the equations governing thermal convection driven by uniform volumetric energy sources are presented for two-dimensional flows in a rectangular domain. The boundary conditions are a rigid, (i.e., zero slip), zero heat-flux lower surface, rigid adiabatic sides, and either a rigid or free (i.e., zero shear) isothermal upper surface. Computations are carried out for Prandtl numbers from 0.05 to 20 and Rayleigh numbers from 5 × 104 to 5 × 108. Nusselt numbers and average temperature profiles within the layer are in good agreement with experimental data for rigid-rigid boundaries. For rigid-free boundaries, Nusselt numbers are larger than in the former case. The structure of the flow and temperature fields in both cases is dominated by rolls, except at larger Rayleigh numbers where large-scale eddy transport occurs. Generally, low velocity upflows over broad regions of the layer are balanced by higher velocity downflows when the flow exhibits a cellular structure. The hydrodynamic constraint at the upper surface and the Prandtl number are found to influence only the detailed nature of flow and temperature fields. No truly steady velocity and temperature fields are found despite the fact that average Nusselt numbers reach steady values.


Sign in / Sign up

Export Citation Format

Share Document