scholarly journals Three-dimensional surface gravity waves of a broad bandwidth on deep water

2021 ◽  
Vol 926 ◽  
Author(s):  
Yan Li

A new nonlinear Schrödinger equation (NLSE) is presented for ocean surface waves. Earlier derivations of NLSEs that describe the evolution of deep-water waves have been limited to a narrow bandwidth, for which the bound waves at second order in wave steepness are described in leading-order approximations. This work generalizes these earlier works to allow for deep-water waves of a broad bandwidth with large directional spreading. The new NLSE permits simple numerical implementations and can be extended in a straightforward manner in order to account for waves on water of finite depth. For the description of second-order waves, this paper proposes a semianalytical approach that can provide accurate and computationally efficient predictions. With a leading-order approximation to the new NLSE, the instability region and energy growth rate of Stokes waves are investigated. Compared with the exact results based on McLean (J. Fluid Mech., vol. 511, 1982, p. 135), predictions by the new NLSE show better agreement than by Trulsen et al. (Phys. Fluids, vol. 12, 2000, pp. 2432–2437). With numerical implementations of the new NLSE, the effects of wave directionality are investigated by examining the evolution of a directionally spread focused wave group. A downward shift of the spectral peak is observed, owing to the asymmetry in the change rate of energy in a more complex manner than that for uniform Stokes waves. Rapid oblique energy transfers near the group at linear focus are observed, likely arising from the instability of uniform Stokes waves appearing in a narrow spectrum subject to oblique sideband disturbances.

1982 ◽  
Vol 124 (-1) ◽  
pp. 109 ◽  
Author(s):  
Daniel I. Meiron ◽  
Philip G. Saffman ◽  
Henry C. Yuen

Author(s):  
M. D. Groves ◽  
A. Mielke

This paper contains a rigorous existence theory for three-dimensional steady gravity-capillary finite-depth water waves which are uniformly translating in one horizontal spatial direction x and periodic in the transverse direction z. Physically motivated arguments are used to find a formulation of the problem as an infinite-dimensional Hamiltonian system in which x is the time-like variable, and a centre-manifold reduction technique is applied to demonstrate that the problem is locally equivalent to a finite-dimensional Hamiltonian system. General statements concerning the existence of waves which are periodic or quasiperiodic in x (and periodic in z) are made by applying standard tools in Hamiltonian-systems theory to the reduced equations.A critical curve in Bond number–Froude number parameter space is identified which is associated with bifurcations of generalized solitary waves. These waves are three dimensional but decay to two-dimensional periodic waves (small-amplitude Stokes waves) far upstream and downstream. Their existence as solutions of the water-wave problem confirms previous predictions made on the basis of model equations.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 115
Author(s):  
Dmitry Kachulin ◽  
Sergey Dremov ◽  
Alexander Dyachenko

This article presents a study of bound periodically oscillating coherent structures arising on the free surface of deep water. Such structures resemble the well known bi-soliton solution of the nonlinear Schrödinger equation. The research was carried out in the super-compact Dyachenko-Zakharov equation model for unidirectional deep water waves and the full system of nonlinear equations for potential flows of an ideal incompressible fluid written in conformal variables. The special numerical algorithm that includes a damping procedure of radiation and velocity adjusting was used for obtaining such bound structures. The results showed that in both nonlinear models for deep water waves after the damping is turned off, a periodically oscillating bound structure remains on the fluid surface and propagates stably over hundreds of thousands of characteristic wave periods without losing energy.


Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


1980 ◽  
Vol 3 (2) ◽  
pp. 97-108 ◽  
Author(s):  
E. De Boer

2014 ◽  
Vol 91 ◽  
pp. 290-299 ◽  
Author(s):  
Zhiliang Lin ◽  
Longbin Tao ◽  
Yongchang Pu ◽  
Alan J. Murphy

Sign in / Sign up

Export Citation Format

Share Document