Energetics and mixing of thermally driven flows in Hele-Shaw cells

2021 ◽  
Vol 930 ◽  
Author(s):  
Hugo N. Ulloa ◽  
Juvenal A. Letelier

Thermally driven flows in fractures play a key role in enhancing the heat transfer and fluid mixing across the Earth's lithosphere. Yet the energy pathways in such confined environments have not been characterised. Building on Letelier et al. (J. Fluid Mech., vol. 864, 2019, pp. 746–767), we introduce novel expressions for energy transfer rates – energetics – of geometrically constrained Rayleigh–Bénard convection in Hele-Shaw cells (HS-RBC) based on two different conceptual frameworks. First, we derived the energetics following the well-established framework introduced by Winters et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128), in which the gravitational potential energy, $E_{\textit {p}}$ , is decomposed into its available, $E_{\textit {ap}}$ , and background, $E_{\textit {bp}}$ , components. Secondly, we derived the energetics considering a new decomposition for $E_{\textit {p}}$ , named dynamic, $E_{\textit {dp}}$ , and reference, $E_{\textit {rp}}$ , potential energies; $E_{\textit {dp}}$ is defined as the departure of the system's potential energy from the reference state $E_{\textit {rp}}$ , determined by the ‘energy’ of the scalar fluctuations. For HS-RBC, both frameworks lead to the same energy transfer rates at a steady state, satisfying the relationship $\langle E_{\textit {ap}} \rangle _{\tau } = \langle E_{\textit {dp}} \rangle _{\tau } + 1/6$ . Consistent with the work by Hughes et al. (J. Fluid Mech., vol. 729, 2013) on three-dimensional Rayleigh–Bénard convection, we report analytical expressions for the energetics and efficiencies of HS-RBC in terms of the Rayleigh number and the global Nusselt number. Additionally, we performed numerical experiments to illustrate the application of the energetics for the analysis of HS-RBC. Finally, we discuss the impact of the thermal forcing and the geometrical control exerted by Hele-Shaw cells on the development of boundary layers, protoplumes and the self-organisation of large-scale flows.

2010 ◽  
Vol 648 ◽  
pp. 509-519 ◽  
Author(s):  
JÖRG SCHUMACHER ◽  
OLIVIER PAULUIS

We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.


2013 ◽  
Vol 729 ◽  
Author(s):  
Graham O. Hughes ◽  
Bishakhdatta Gayen ◽  
Ross W. Griffiths

AbstractThe mechanical energy budget for thermally equilibrated Rayleigh–Bénard convection is developed theoretically, with explicit consideration of the role of available potential energy, this being the form in which all the mechanical energy for the flow is supplied. The analysis allows derivation for the first time of a closed analytical expression relating the rate of mixing in symmetric fully developed convection to the rate at which available potential energy is supplied by the thermal forcing. Only about half this supplied energy is dissipated viscously. The remainder is consumed by mixing acting to homogenize the density field. This finding is expected to apply over a wide range of Rayleigh and Prandtl numbers for which the Nusselt number is significantly greater than unity. Thus convection at large Rayleigh number involves energetically efficient mixing of density variations. In contrast to conventional approaches to Rayleigh–Bénard convection, the dissipation of temperature or density variance is shown not to be of direct relevance to the mechanical energy budget. Thus, explicit recognition of available potential energy as the source of mechanical energy for convection, and of both mixing and viscous dissipation as the sinks of this energy, could be of further use in understanding the physics.


Sign in / Sign up

Export Citation Format

Share Document