Experimental Study on Bubble Collapse Near a Solid Boundary

Author(s):  
Shuai Zhang ◽  
Shiping Wang ◽  
Yunlong Liu

In this paper, we present a high-voltage electric-spark bubble-generating method which can generate a bubble with its maximum radius reaching up to ∼35 mm at a room pressure. Vertical migration and clear liquid jet inside the bubble are captured by a high speed photography. With this method, a series of experiments on bubbles collapse above a solid boundary are carried out under different non-dimensional standoff distances γ (= s/Rm, where s is the vertical distance from the bubble center to the solid boundary and Rm denotes the maximum bubble radius). It is found when bubble is extremely close to the solid boundary (γ < 0.6), the lower surface of the bubble will cling to the solid boundary, which causes the cone-shaped liquid jet to impact on solid boundary directly without buffering of the water layer. With the increase of γ, the bottom of the bubble is gradually away from the solid boundary with an increasing curvature, but the jet inside the bubble remains conical all along. The speed of the jet tip and the migration of the bubble top are also discussed subsequently, aiming to provide a reference for the numerical study. Finally, the critical value of γ is investigated, at which the effect of the buoyancy will compensate the attraction of the solid boundary when the buoyancy parameter of bubble is bout 0.06.

Author(s):  
Sheng-Hsueh Yang ◽  
Shenq-Yuh Jaw ◽  
Keh-Chia Yeh

In this study, a single cavitation bubble is generated by rotating a U-tube filled with water. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to a solid boundary. Particle images of bubble collapse flow recorded by high speed CCD camera are analyzed by multi-grid, iterative particle image distortion method. Detail velocity variations of the transient bubble collapse flow are obtained. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times of the bubble radius, the liquid jet is able to impinge the solid boundary to form a stagnation ring. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet. At certain critical position, the bubble collapse flow will produce a Kelvin–Helmholtz vortex, the Richtmyer-Meshkov instability, or the generation of a counter jet flow, depending on the strengths of the pressure waves. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash inside-out without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.


1972 ◽  
Vol 94 (4) ◽  
pp. 825-832 ◽  
Author(s):  
C. L. Kling ◽  
F. G. Hammitt

The collapse of spark-induced cavitation bubbles in a flowing system was studied by means of high speed photography. The migration of cavitation bubbles toward a nearby solid boundary during collapse and rebound was observed. Near its minimum volume the bubble typically formed a high speed microjet, which struck the nearby surface causing individual damage craters on soft aluminum.


1989 ◽  
Vol 206 ◽  
pp. 299-338 ◽  
Author(s):  
A. Vogel ◽  
W. Lauterborn ◽  
R. Timm

The dynamics of laser-produced cavitation bubbles near a solid boundary and its dependence on the distance between bubble and wall are investigated experimentally. It is shown by means of high-speed photography with up to 1 million frames/s that jet and counterjet formation and the development of a ring vortex resulting from the jet flow are general features of the bubble dynamics near solid boundaries. The fluid velocity field in the vicinity of the cavitation bubble is determined with time-resolved particle image velocimetry. A comparison of path lines deduced from successive measurements shows good agreement with the results of numerical calculations by Kucera & Blake (1988). The pressure amplitude, the profile and the energy of the acoustic transients emitted during spherical bubble collapse and the collapse near a rigid boundary are measured with a hydrophone and an optical detection technique. Sound emission is the main damping mechanism in spherical bubble collapse, whereas it plays a minor part in the damping of aspherical collapse. The duration of the acoustic transients is 20-30 ns. The highest pressure amplitudes at the solid boundary have been found for bubbles attached to the boundary. The pressure inside the bubble and at the boundary reaches about 2.5 kbar when the maximum bubble radius is 3.5 mm. The results are discussed with respect to the mechanism of cavitation erosion.


2001 ◽  
Vol 433 ◽  
pp. 283-314 ◽  
Author(s):  
EMIL-ALEXANDRU BRUJAN ◽  
KESTER NAHEN ◽  
PETER SCHMIDT ◽  
ALFRED VOGEL

The interaction of a laser-induced cavitation bubble with an elastic boundary is investigated experimentally by high-speed photography and acoustic measurements. The elastic material consists of a polyacrylamide (PAA) gel whose elastic properties can be controlled by modifying the water content of the sample. The elastic modulus, E, is varied between 0.017 MPa and 2.03 MPa, and the dimensionless bubble–boundary distance, γ, is for each value of E varied between γ = 0 and γ = 2.2. In this parameter space, jetting behaviour, jet velocity, bubble migration and bubble oscillation time are determined. The jetting behaviour varies between liquid jet formation towards or away from the elastic boundary, and formation of an annular jet which results in bubble splitting and the subsequent formation of two very fast axial liquid jets flowing in opposite directions. The liquid jet directed away from the boundary reaches a maximum velocity between 300 ms−1 and 600 ms−1 (depending on the elastic modulus of the sample) while the peak velocity of the jet directed towards the boundary ranges between 400 ms−1 and 800 ms−1 (velocity values averaged over 1 μs). Penetration of the elastic boundary by the liquid jet is observed for PAA samples with an intermediate elastic modulus between 0.12 and 0.4 MPa. In this same range of elastic moduli and for small γ-values, PAA material is ejected into the surrounding liquid due to the elastic rebound of the sample surface that was deformed during bubble expansion and forms a PAA jet upon rebound. For stiffer boundaries, the bubble behaviour is mainly characterized by the formation of an axial liquid jet and bubble migration directed towards the boundary, as if the bubble were adjacent to a rigid wall. For softer samples, the bubble behaviour becomes similar to that in a liquid with infinite extent. During bubble collapse, however, material is torn off the PAA sample when bubbles are produced close to the boundary. We conclude that liquid jet penetration into the boundary, jet-like ejection of boundary material, and tensile-stress-induced deformations of the boundary during bubble collapse are the major mechanisms responsible for cavitation erosion and for cavitation-enhanced ablation of elastic materials as, for example, biological tissues.


1998 ◽  
Vol 361 ◽  
pp. 75-116 ◽  
Author(s):  
A. PHILIPP ◽  
W. LAUTERBORN

In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are recorded with high-speed photography with framing rates of up to one million frames/s. Damage is observed when the bubble is generated at a distance less than twice its maximum radius from a solid boundary (γ=2, where γ=s/Rmax, s is the distance between the boundary and the bubble centre at the moment of formation and Rmax is the maximum bubble radius). The impact of the jet contributes to the damage only at small initial distances (γ[les ]0.7). In this region, the impact velocity rises to 83 m s−1, corresponding to a water hammer pressure of about 0.1 GPa, whereas at γ>1, the impact velocity is smaller than 25 m s−1. The largest erosive force is caused by the collapse of a bubble in direct contact with the boundary, where pressures of up to several GPa act on the material surface. Therefore, it is essential for the damaging effect that bubbles are accelerated towards the boundary during the collapse phases due to Bjerknes forces. The bubble touches the boundary at the moment of second collapse when γ<2 and at the moment of first collapse when γ<1. Indentations on an aluminium specimen are found at the contact locations of the collapsing bubble. In the range γ=1.7 to 2, where the bubble collapses mainly down to a single point, one pit below the bubble centre is observed. At γ[les ]1.7, the bubble shape has become toroidal, induced by the jet flow through the bubble centre. Corresponding to the decay of this bubble torus into multiple tiny bubbles each collapsing separately along the circumference of the torus, the observed damage is circular as well. Bubbles in the ranges γ[les ]0.3 and γ=1.2 to 1.4 caused the greatest damage. The overall diameter of the damaged area is found to scale with the maximum bubble radius. Owing to the possibility of generating thousands of nearly identical bubbles, the cavitation resistance of even hard steel specimens can be tested.


2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


Author(s):  
Yoichiro Fukuchi ◽  
Tomoki Kondo ◽  
Keita Ando

Abstract In semiconductor industry, liquid jet cleaning plays an important role because of its high cleaning efficiency and low environmental load. However, its cleaning mechanism is not revealed in detail because the experimental observation of high-speed and sub-micron droplets is challenging. Furthermore, higher impact velocity may give rise to surface erosion due to water-hammer shock loading from the impingement. To study cleaning mechanisms and surface erosion, numerical simulation of droplet impingement accounting for both viscosity and compressibility is an effective approach. In the previous study, wall-shear-flow generation has evaluated from the simulation of high-speed single droplet impingement. To evaluate more practical model of jet cleaning application, simulation of two droplets simplifying mono-dispersed splay of droplet train is favorable. Here, we numerically simulated impingement of two droplets, which allows for evaluating water-hammer pressure and wall shear stress. We consider the case of two water droplets (200 μm in diameter) that collides continuously, at speed 50 m/s, at the inter-droplet distance from 250 to 400 μm, with a no-slip rigid wall covered with a water layer (100 μm in thickness). The simulation is based on compressible Navier-Stokes equations for axisymmetric flow and the mixture of two components appears in numerically diffusion interface expressed by the volume average and advection equation. The simulation is solved by finite-volume WENO scheme that can capture both shock waves and material interface. In our simulation, the impingement of second droplet impingement gain higher shear stress than the single droplet impingement. At the case that the inter-droplet distance is 300 μm, maximum shear stress is 30.22 kPa (at the second droplet impingement), which is much larger than at the first droplet impingement (8.42 kPa). This result indicates how the second droplet impingement make wall shear flow induced by first droplet impingement stronger. From the parameter study of the inter-droplet distance, we can say that wall shear stress gets stronger as water layer thickness decreases. Furthermore, the maximum wall pressure is 1.96 MPa at the second droplet impingement, which is larger than at the first droplet impingement (1.46 MPa). From this study, the evaluation of surface erosion caused by jet cleaning is expected. The simulation suggests that multiple droplets impingement continuously may gain higher cleaning efficiency, which will give us a fundamental insight into liquid jet cleaning technologies. For further study, simulation of water column impingement and comparing the result of impingement of two droplets are expected.


2007 ◽  
Vol 570 ◽  
pp. 407-429 ◽  
Author(s):  
M. LEE ◽  
E. KLASEBOER ◽  
B. C. KHOO

The formation of a toroidal bubble towards the end of the bubble collapse stage in the neighbourhood of a solid boundary has been successfully studied using the boundary integral method. The further evolution (rebound) of the toroidal bubble is considered with the loss of system energy taken into account. The energy loss is incorporated into a mathematical model by a discontinuous jump in the potential energy at the minimum volume during the short collapse–rebound period accompanying wave emission. This implementation is first tested with the spherically oscillating bubble system using the theoretical Rayleigh–Plesset equation. Excellent agreement with experimental data for the bubble radius evolution up to three oscillation periods is obtained. Secondly, the incorporation of energy loss is tested with the motion of an oscillating bubble system in the neighbourhood of a rigid boundary, in an axisymmetric geometry, using a boundary integral method. Example calculations are presented to demonstrate the possibility of capturing the peculiar entity of a counterjet, which has been reported only in recent experimental studies.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Prachya Mukda ◽  
Kulachate Pianthong ◽  
Wirapan Seehanam

Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.


2018 ◽  
Vol 841 ◽  
pp. 28-49 ◽  
Author(s):  
Emil-Alexandru Brujan ◽  
Tatsuya Noda ◽  
Atsushi Ishigami ◽  
Toshiyuki Ogasawara ◽  
Hiroyuki Takahira

The behaviour of a laser-induced cavitation bubble near two perpendicular rigid walls and its dependence on the distance between bubble and walls is investigated experimentally. It was shown by means of high-speed photography with $100\,000~\text{frames}~\text{s}^{-1}$ that an inclined jet is formed during bubble collapse and the bubble migrates in the direction of the jet. At a given position of the bubble with respect to the horizontal wall, the inclination of the jet increases with decreasing distance between the bubble and the second, vertical wall. A bubble generated at equal distances from the walls develops a jet that is directed in their bisection. The penetration of the jet into the opposite bubble surface leads to the formation of an asymmetric toroidal bubble that is perpendicular to the jet direction. At a large distance from the rigid walls, the toroidal bubble collapses in the radial direction, eventually disintegrating into tiny microbubbles. When the bubble is in contact with the horizontal wall at its maximum expansion, the toroidal ring collapses in both radial and toroidal directions, starting from the bubble part opposite to the vertical wall, and the bubble achieves a crescent shape at the moment of second collapse. The bubble oscillation is accompanied by a strong migration along the horizontal wall.


Sign in / Sign up

Export Citation Format

Share Document